Отвлечемся сначала от загрязняющего предприятия и займемся свойствами загрязняемой среды. Фиксируем пункт местности, где изучается загрязнение, и тем самым свойства среды в этом месте и расстояние от загрязняющего предприятия. Вся излагаемая дальше динамика загрязнения относится к выбранному пункту. Будем считать, что рассматривается вполне определенный загрязнитель, попавший (все равно, каким образом) во вполне определенную среду. Чтобы установить временно'е изменение загрязнения, можно воспользоваться уже известным нам методом фазовых портретов. В отличие от специальных условий главы 1, где был естественный период развития популяции в один год, после которого происходит смена поколений, ситуация с выбросами и разрушением загрязнителя может быть самой разнообразной. Поэтому последовательные наблюдения концентрации можно производить через равные промежутки времени, продолжительность которых будет зависеть от скорости процессов загрязнения и разрушения загрязнителя. Для простоты мы будем условно называть такой произвольно выбранный промежуток времени "годом". Но в действительности продолжительность этого периода выбирается в зависимости от рассматриваемой задачи.
По аналогии с методом фазовых портретов главы 1, произведем в текущем году, например, 1 января, измерение концентрации загрязнителя в среде и обозначим полученную величину через К; повторим измерение через год и обозначим полученную величину через М. Предположим, что в течение года наблюдения никакие добавочные загрязнения в среду не вносятся. Тогда можно назвать пару чисел (К,М) "стандартным наблюдением" разрушения (или, на ученом языке,"деструкции") данного загрязнителя в данной среде. Производя ряд таких наблюдений, можно получить фазовый портрет деструкции и построить "облако" соответствующих точек на плоскости с координатами (К,М). Есть основания полагать, что величина М зависит преимущественно от К, хотя, разумеется, на процесс деструкции в течение года могут влиять и различные случайные обстоятельства – погода, перемещение почвенных вод и т.д. Пренебрегая этими отклонениями, будем считать, что М есть вполне определенная функция от К: М = f(К), и назовем ее функцией деструкции.
Как обычно в исследовании сложных систем, мы не можем описать эту функцию формулой, а находим ее с помощью многократных измерений указанного типа, которые мы назвали стандартными наблюдениями. Имея график такой функции, можно решить ряд вопросов, возникающих при промышленном загрязнении среды. В отличие от главы 1, в рассматриваемом теперь случае всегда М < К, то есть концентрация загрязнителя может только уменьшаться: среда перерабатывает его с помощью каких-либо механизмов в другие вещества, не вызывающие у нас опасений, или выводит его в другие среды – например, из почвы в воздух, или наоборот. Мы считаем, что загрязнитель, попавший в среду, сам по себе не размножается, как это может быть в случае бактериальных загрязнений; нас интересуют только "мертвые" загрязнения.
Подчеркнем, что мы сосредоточиваем здесь внимание только на одной рассматриваемой среде и одном загрязняющем веществе, не принимая во внимание возможной вредности этого вещества после перемещения его в другую среду. Для другой среды будет и другая функция деструкции.
Имеющиеся экспериментальные данные позволяют сделать некоторые общие предположения о функциях деструкции. Мы предположим, что деструкция загрязнителя осуществляется двумя типами разрушителей – живыми и мертвыми. Упрощенная картина их действия изображена на рисунке 1. Так как количество загрязнения в наших предположениях может только убывать, то имеем M < K; таким образом, весь фазовый график лежит
Рис.1