Читаем Приключения радиолуча полностью

Хотя форма записи уравнений кратка и на первый взгляд довольно проста, но чтобы применить их и решить для конкретного случая, нужна подчас высокая инженерная и математическая квалификация, выдумка, интуиция. Тем не менее физический смысл уравнений понятен.

Первое уравнение (нумерация условная) гласит, что электрическое поле образуется зарядами и его силовые линии начинаются и кончаются на зарядах.

Второе уравнение описывает магнитные силовые линии: они не имеют ни начала, ни конца, поскольку свободных магнитных зарядов нет. Это кольцеобразные замкнутые линии.

Казалось бы, магнитные заряды должны существовать. Ведь магнитное поле между полюсами постоянного магнита очень похоже на электрическое поле между двумя разнесенными электрическими зарядами разного знака. Естественно было думать, что магнитное поле имеет свои источники, которые связаны с ним таким же образом, как электрический заряд связан с электрическим полем. Тогда, например, «северный полюс» стрелки компаса был бы местом скопления магнитных «зарядов» одного вида, а на «южном полюсе» был бы избыток зарядов другого вида.

Природа по некоторой причине не использовала такую возможность. Мир вокруг нас оказался совершенно несимметричным в том смысле, что магнитных зарядов не существует. Во всяком случае их никому не удалось обнаружить. Высказывались предположения, что пары магнитных полюсов, подобно парам элементарных частиц, могут возникать и разлетаться в ядерных взаимодействиях, происходящих при больших энергиях. Поиски таких частиц, названных магнитными монополями, производились в последнее время, но без успеха. Полагают также, что монополи существовали сразу же после Большого взрыва.

Так или иначе, вопрос о том, могут ли существовать монополи, остается открытым. Если же когда-нибудь кто-либо открыл бы монополь, то это событие не порушило бы Максвеллову теорию. Просто в той области, где будет найден монополь, второе уравнение не будет соблюдаться. Как бы там ни было, говоря языком математической логики, высказывание: «обычное вещество „сделано“ из электрических, а не магнитных зарядов» — всегда останется истинным.

Третье уравнение — общий случай закона электромагнитной индукции Фарадея: любое изменение магнитного поля генерирует в соответствии с этим уравнением вихревое электрическое поле.

Но вот последнее уравнение содержит нечто новое. Раньше была известна только часть его, которая годилась для постоянных токов, — закон Ампера, утверждающий, что текущие по проволоке электрические заряды (а точнее постоянный ток, то есть движущиеся заряды, среднее число которых, в единицу времени проходящих через сечение провода, одно и то же в любой момент времени) создают определяемое уравнением Ампера магнитное поле.

Связав воедино с помощью уравнений открытые до него законы, Максвелл увидел, что система несовместна. Значит, как мы помним из школьного курса, она не имеет решения. Чтобы сделать систему совместной, ученый добавил в последнее уравнение всего одно слагаемое, коему и обязано радио своим происхождением.

Что это была за «добавка»? К току движущихся зарядов (или, как его еще называют, току конвекции, или проводимости) Максвелл прибавил воображаемый ток смещения. Так он назвал меняющееся во времени электрическое поле. Оно, подобно электрическому току, рождало точно такое же магнитное поле, поэтому Максвелл назвал его тоже током — током смещения. Почему смещения?

Причины носят исторический характер, и история очень долгая. Подробно ее касаться не будем. Истоки ее восходят к громоздкой механической модели Максвелла из шестеренок, на которой он изучал электромагнитные явления. Модель, возможно, и привела его к великому открытию. Как-то он изучал диэлектрики. Известно, что диэлектрики не проводят электричества. В них, в отличие от металлов, нет зарядов, могущих перемещаться на значительные расстояния и переносить электрический ток. Максвелл заметил, что определенные шестеренки в его модели смещались, когда он имитировал на ней включение и выключение электрического поля. Он прозорливо усмотрел в этом следующую аналогию: под действием внешнего электрического поля заряды, входящие в состав диэлектрика, не срываются полем со своих мест, а лишь несколько смещаются. То есть сами молекулы остаются неподвижными, однако электрические частицы противоположных знаков (протоны и электроны), входящие в состав молекул диэлектрика, должны под действием сил поля смещаться в противоположные стороны. Молекула деформируется, или иначе — поляризуется.

Большая научная смелость потребовалась Максвеллу, чтобы отождествить смещение связанных в молекуле зарядов с электрическим током. Такого тока ранее никто не наблюдал. Максвелл признал за ним право создавать собственное магнитное поле, сделал его в этом отношении равноправным с обычным током, текущим по проводнику.

Если рассматривать последнее уравнение отдельно, то само по себе введение тока смещения мало бы что дало. Но в совокупности с остальными тремя уравнениями эта добавка, можно сказать, произвела революционный переворот в физике.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука