Читаем Приключения радиолуча полностью

Помимо своей информационной вместимости, диапазоны УКВ экономичны. Они позволяют сконцентрировать энергию волны в узком луче, и чем короче волна, тем ýже и информативнее луч.

Как же удалось человеку найти радиоволны и овладеть ими — этим богатством, которое мы почти не замечаем, но без которого современное бытие уже невозможно?

<p>«Не бог ли эти знаки начертал?»</p><p><image l:href="#i_006.png"/></p>От Фалеса до Фарадея

Истоки радио восходят к открытию единства и взаимосвязи электричества и магнетизма. О существовании электрических и магнитных явлений люди знали еще в древние времена.

Вспомним легендарного грека Фалеса из Милета, жившего в VI веке до нашей эры. Говорят, у его златокудрой дочери было янтарное веретено. Она будто и заметила электризацию янтаря — его свойство притягивать пылинки, нити, кусочки папируса при трении о шерсть. Может быть, это и сказка, но историки свидетельствуют, что янтарь был тогда в большом ходу и на столь необычное свойство наверняка обратили бы внимание. Не исключено, что именно история с янтарным веретеном много веков спустя подарила миру новое слово — «электричество». Ведь обработанный янтарь по-гречески — электрон, что значит «притягивающий к себе».

Столь же древнюю историю имеет и магнит. Три тысячи лет назад в Китае уже пользовались простейшим компасом — указателем юга. А вот еще одно древнее применение магнита, сильно напоминающее современный прибор, с помощью которого в аэропортах определяют наличие у пассажиров металлических предметов. Как утверждают китайские ученые, нечто подобное уже было двадцать два века назад в городе Чан-Яне (нынешнем Сиане). Там ворота перед дворцом правителя были сделаны из магнитного железа. Ни один злоумышленник не мог пронести тайком через эти ворота оружие. Невидимая сила «вытаскивала» нож или меч из-под одежды, и стража уводила преступника в темницу…

По утверждению Платона, название «магнит» дано Эврипидом. По версии Плиния, свое имя магнит получил в честь сказочного пастуха Магниса, у которого к сандалиям и к палке прилипали странные камни. В сандалиях были железные гвозди, а у палки железный наконечник.

Тит Лукреций Кар в своей поэме «О природе вещей» утверждает, что слово «магнит» происходит от названия провинции Магнезия (теперешнее название Манисса). Есть там гора, где до сих пор встречаются магнитные камни.

Впервые связь между электричеством и магнетизмом обнаружил Ганс Христиан Эрстед — профессор химии Копенгагенского университета. А точнее не он, а студент, имя которого не вошло в историю. Как-то Эрстед читал лекцию, по ходу которой он демонстрировал свойство электрического тока нагревать проволоку. Рядом с проволокой лежал компас, никакого отношения к опыту не имевший, и один из студентов заметил движение стрелки компаса в тот момент, когда Эрстед включал и выключал ток.

Говорят, что случайность — дополнение неизбежности. За несколько лет до опыта Эрстед писал: «Следует испробовать, не производит ли электричество… каких-либо действий на магнит…» Данное открытие, пожалуй, еще одна иллюстрация к словам Луи Пастера: «Случай помогает лишь умам, подготовленным к открытию». Так было положено начало новой отрасли физики — электромагнетизму.

«Памфлет» Эрстеда с описанием опыта попал к французу Араго. Тот повторяет опыт и докладывает о новом явлении 4 сентября 1820 года на заседании академии в Париже. Доклад слушает Ампер. Он чувствует, что пришел наконец миг, которого он неосознанно ждал всю жизнь. Две недели напряженной работы, и его имя вошло в историю. Все мы знаем, что ампер — единица измерения электрического тока. Именно Ампер первым произнес слова «сила тока». Но не в том главная его заслуга. «…Я свел все магнитные явления к чисто электрическим эффектам» — эти слова Ампера сохранились в протоколе заседания академии от 18 сентября 1820 года. Ампер показал, что два проводника, по которым течет электрический ток, притягиваются или отталкиваются подобно магнитам. А катушки с током взаимодействуют друг с другом как настоящие магниты. Он определил и направление действия электромагнитной силы в своем знаменитом «правиле пловца»: «Если дана проволока и направление идущего по ней тока, то следует представить себе наблюдателя, плывущего вместе с током и обращенного лицом к стрелке, тогда северный полюс стрелки отклонится в ту сторону, где находится левая рука наблюдателя». Так родилась электродинамика Ампера, сводящая все магнитные явления к электрическим.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука