Читаем Прикладные аспекты аварийных выбросов в атмосферу полностью

В большинстве работ коэффициент а считается постоянным, однако в действительности это не так. Только в одном частном случае осесимметричной изотермической струи при отсутствии сносящего потока, как показывает опыт [11] это соотношение постоянно.

Соотношение w/V характеризует угол раствора струйного потока. Естественно, что оно должно зависеть от плотностей вещества струи и окружающей среды и от их степеней турбулентности. Рику и Сполдинг [96] экспериментально получили зависимость коэффициента вовлечения от плотности. Ими было получено соотношение

w / V = ω,

где ω = а (ρ/ ρе) S.

По данным [12,13] а = 0,08 для осесимметричной струи и а = 0,22 — для струи линейной [14] при экспериментах в лабораторных условиях, что соответствует случаю покоящейся среды (штиль). В такой постановке в настоящее время решаются наиболее «продвинутые» задачи теории струй.

Выражение (3.1) при этом приобретает следующий вид:

где  — новый коэффициент вовлечения.

Вовлечение Е в форме (3.2) при записанных выше постоянных значениях коэффициента а уже учитывает неоднородность плотностей окружающей среды и струи и очевидно вполне приемлемо для лабораторных практически штилевых условий, но оно не зависит от динамических и метеорологических характеристик атмосферного воздуха, которые существенно влияют на турбулентный захват струей внешней среды, и поэтому не пригодно для описания процессов в реальной атмосфере. Зависимость вовлечения при такой записи от динамической активности внешней среды отсутствует и поэтому «одна из основных задач теории турбулентности» (как отмечается в [11]) пока остается не решенной до конца. Для ее решения следует положить С, переменным — связанным интегрально с пульсационными параметрами атмосферы.

Сохраним форму записи (3.2), предполагая однако, что С, (или а) не константа, а некоторый параметр, зависящий от степени турбулентности атмосферы или иначе от ее устойчивости. По классификации Пасквилла [15,50] атмосфера по характеру устойчивости может быть подразделена на 7 градаций или классов (А, В, С, D, Е, F, G), причем каждому классу можно поставить в однозначное соответствие угол расширения турбулентной струи. Докажем, что в такой постановке С, зависит от турбулизации атмосферы, т. е. от коэффициента расширения потока к.

Не нарушая общности, рассмотрим струйный поток плотности с круглого поперечного сечения, распространяющийся со скоростью V в неподвижной среде плотности ре. Как известно, он имеет вид расширяющегося прямоугольного конуса с переменным углом расширения β = arc tg k (в случае неизотропного потока углы его расширения

βz = [φ'2]1/2 в направлении оси Z

и βу = [θ'2]1/2 в направлении оси Y,

где

φ' и θ' — пульсации угла вектора скорости в вертикальной плоскости вдоль соответствующих направлений).

Будем вести рассмотрение элементарного газового объема струи, ограниченного нормальными к оси поперечными сечениями «1» и «2» и боковой поверхностью (Рис. 3.2).

Рис. 3.2. Схема вертикального осевого сечения элементарного газового объема струи (на верхнем рисунке заштрихован): «1» и «2» — контрольные сечения, ограничивающие элементарный газовый объем; 3 — приращение газового объема при движении потока от сечения «1» к сечению «2»; 4 — неизотермическая струя.

Так как длина контрольного объема Δl — мала, то внешнюю его поверхность, контактирующую с воздухом окружающей среды, можно считать прямолинейной конической. Ее образующая на этом рисунке — линия cd.

Вычислим увеличение объема струи Av при ее развитии от сечения «1» к сечению «2». Из рисунка видно, что

Введем среднее или текущее значение радиуса усеченного конуса R и приращение радиуса AR по формулам:

Из решения системы алгебраических уравнений относительно переменных R и AR получаем:

R2=R + ΔR/2; R1 = R — ΔR/2. (3.8)

Вычислим выражение в квадратных скобках (3.6) при учете соотношений (3.8). Получаем:

R22 — 2R1 + R1Ra = 3RΔR (1– ΔR/6R). (3.9)

Так как для развитого турбулентного потока ΔR /R < 1, то ΔR / 6R << 1 и вторым членом в скобках правой части (3.9) можно пренебречь по сравнением с 1. При этом объем кругового конического кольца Δv записывается так:

Δv ≈ πRΔRΔI. (3.10)

Преобразуем эту формулу при учете следующих геометрических соотношений:

S = πR2; k = tg β = ΔR/ΔI.

Получаем

В этом соотношении:

S — площадь поперечного сечения контрольного газового элемента в некотором текущем или среднем сечении.

Масса кругового конического кольца с образующей cd находится из уравнения

ΔM = рΔυ (3.12)

где  — осредненное по объему значение плотности вещества струи.

Так как AM в точности равна массе поступившего в струю вещества за счет вовлечения окружающего воздуха на пространственно-временном интервале Εl Δt:

ΔM = Е ΔI Δt, (3.13)

то подставив в (3.13) вместо Е его выражение из (3.2), а вместо скорости его значение через дифференциалы ΔI и Δt, получаем

Приравнивая AM из (3.12) и (3.13а), получаем:

откуда

Из соотношения (3.14) следует, что вовлечение в струйный поток окружающего воздуха полностью определяется его угловым коэффициентом или углом расширения струи.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное