Читаем Прикладные аспекты аварийных выбросов в атмосферу полностью

Этот подход, использующий кроме перечисленных предположений, гипотезу пропорциональности между скоростью вовлечения окружающего воздуха в клуб или струйный поток и значением вертикальной скорости его подъема, развит, например, в работах [8 — 10,38]. Он существенно упрощает процедуру расчета и при использовании экспериментальных констант вовлечения и аэродинамического сопротивления движению приводит к успешному решению задачи.

<p>3.1. Атмосферная диффузия и вовлечение окружающей среды в выброс</p>

Диффузией называют распространение вещества в какой-либо среде в направлении убывания его концентрации, обусловленное движением его частиц: атомов, молекул, ионов, броуновских частиц или отдельных элементарных газовых объемов — молей. При ламинарной диффузии вещество распространяется механизмом теплового движения мельчайших частиц на атомно-молекулярном уровне; при турбулентной — этот процесс происходит под влиянием вихревого беспорядочного движения отдельных макроскопических частиц и образований по сложным непредсказуемым траекториям.

Для инженерных расчетов и оценок большой интерес представляют турбулентные движения газообразной и жидкой среды, так как они реализуются в абсолютном большинстве практических задач.

В отличие от ламинарного плавного движения при турбулентном движении среды происходит интенсивное ее перемешивание, и диффузия в ней многократно усиливается. В настоящее время имеются десятки теорий турбулентности и вероятно не меньше объяснений механизма диффузии, хорошо «работающих» в частных случаях, но не являющихся логически завершенными и универсальными. В работе [50] отмечается, что в окончательном виде проблема турбулентной диффузии еще не сформулирована в окончательном виде как единая физическая модель, способная объяснить все ее многообразные аспекты.

К сегодняшнему дню к проблеме диффузии имеются два основных подхода, на базе которых ответвляются более мелкие и частные: теория градиентного переноса и статистическая теория. Согласно теории градиентного переноса диффузия от источника связана с локальным градиентом концентрации его вещества; статистическая теория рассматривает движение частиц как составную часть сплошной среды. Между этими подходами существует близкая связь, так как они описывают одно и то же явление с разных сторон, но имеются и различия.

Теория градиентного переноса от непрерывного точечного источника в атмосфере является эйлеровой — рассматривающей свойства движения жидкости или газа относительно зафиксированной в пространстве системы координат. Статистическая же теория, рассматривающая движение отдельных частиц, является лагранжевой.

Особое место занимают задачи распространения антропогенных выбросов в виде различных струйных течений разной продолжительности, интенсивности и концентрации загрязнений. Диффузия таких выбросов может рассматриваться на основе теории струй, развитой, например, в работах [91–95]. Описание таких течений с помощью системы дифференциальных уравнений связано с трудностями вычислительного характера. Кроме того, в ряде важных конкретных задач этого рода не удается учесть сложные граничные условия и сильное влияние таких эффектов реальной атмосферы, как дальнодействие пульсаций давления, значительная перемежаемость турбулентного потока, неоднородность и не стационарность ветрового потока и т. п.

Наблюдаемые в опытах и в реальных объектах относительно крупные вихри образуются при турбулентном обмене конечными массами жидкости или газа, происходящими между соседними слоями потока с разной завихренностью и разной средней скоростью. При попадании турбулентной частицы или моля в новый слой среды они обладают избыточной завихренностью и избыточной поступательной скоростью, которые порождают пульсации этих параметров. Отмечается [89], что в период дискретного существования завихренной частицы она воздействует на поток как твердое тело с некоторой угловой скоростью, обтекаемое потоком с относительной скоростью, то есть как вихрь конечного диаметра.

Турбулентное течение сопровождается образованием, перемещением, взаимодействием и затуханием интенсивности вихревого движения различных масштабов. Размеры наиболее крупных вихрей сравнимы с характерными размерами потока (радиусом трубы или устройства выброса, канала, погранично-го слоя и т. п.).

Возникновение вихревых структур, увеличивающихся в размерах по течению, связано с переходом от ламинарного режима к турбулентному. Оно обуславливает интенсивное перемешивание потока и однородность его физических характеристик.

Развитое турбулентное течение характеризуется наличием разномасштабных вихревых структур, способных оставаться когерентными (согласованно протекающими во времени и пространстве) на значительном расстоянии вниз по потоку.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное