Читаем Посвящение в радиоэлектронику полностью

Стекловолокно можно сделать очень тонким, теоретически до половины длины волны, т. е. 0,25 мкм. Промышленно выпускаемые волокна значительно толще, диаметр их составляет доли миллиметра. Тем не менее стеклянное волокно такого диаметра оказывается гибким и легко наматывается на катушку. Снаружи волокно покрывают слоем полиэтилена для защиты от механических повреждений. Торцы стекловолокна шлифуют. И к ним присоединяют светодиод или полупроводниковый лазер с одной стороны и фотодиод — с другой. Волоконная оптическая линия связи (ВОЛС) — готова! Ее можно, как и кабель, уложить под землей, можно подвесить на столбах, протащить в слуховое окно — словом, обращаться так же, как мы обращаемся с электрическими проводами. Причем ВОЛС имеет явные преимущества. Она не боится сырости (никаких коротких замыканий или утечек тока не будет), не требует изоляции, не коррозирует и не окисляется. А на ее изготовление идет самый недефицитный материал — ведь стекло получают переплавкой обычного песка!

Разумеется, есть и проблемы. О ВОЛС долго спорили. Скорость передачи информации высокая, это хорошо, но вот дальность…

Стекло хотя и слабо, но поглощает свет. Первые ВОЛС имели длину десятки метров. Наконец разработали особо прозрачные стекла и подобрали оптимальную длину волны, на которой потери минимальны. Она оказалась в ближней ИК области около 1…1,5 мкм. И вот первый большой успех в Великобритании — сдана в эксплуатацию ВОЛС длиной около 64 км без единого промежуточною усилителя.

Первая в нашей стране подземная телевизионная линия оптического кабеля была подведена в июне 1984 года в Москве к дому 19 (корп. 1) по Алтайской улице. Этот дом находится в так называемой теневой зоне, где телевизионный сигнал сильно ослабляется и искажается из-за интерференции волн, отраженных от окружающих зданий. Приемная антенна была установлена на крыше соседнего 16-этажного здания, откуда видна телебашня в Останкине. Принятым телевизионным сигналом модулировалось световое излучение, направлявшееся в оптический кабель длиной 2,5 км. На другом конце кабеля был установлен фотодетектор, с выхода которого телевизионный сигнал поступал к усилителю и далее в коаксиальную кабельную сеть дома. Что ж, поживем — увидим, что будет дальше, а пока настала пора рассказать о последнем достижении оптоэлектроники — интегральной оптике.

Интегральная оптика

Почему интегральная и что это значит? Ведь оптика как отрасль науки и техники занимается линзами, зеркалами, призмами и тому подобными хорошо знакомыми нам предметами. Путь к интегральной оптике был недолгим и вполне логичным. Как только научились изготавливать миниатюрные источники некогерентного и когерентного света (светодиоды и полупроводниковые лазеры), как только научились делать крохотные полупроводниковые фотоприемники, явилась мысль объединить их с другими, оптическими деталями — модуляторами, световодами (оптическими волноводами), линзами и тому подобными устройствами, с одной стороны, и электронными схемами — с другой. Объединение — значит интеграция, отсюда и произошло название. Возможно и другое толкование. Интегральная микросхема отличается тем, что все се элементы изготавливаются на одном кристалле в едином технологическом процессе. То же самое относится и к элементам интегральных оптических и оптоэлектронных систем.

Простейший представитель интегральной оптоэлектроники — оптрон выполнен на одной пластинке кремния. В середине ее проходит световод тонкий канал с отражающими свет стенками. А по краям канала расположены светодиод и фотодиод. Ширина световода может быть малой: до половины длины световой волны. Его свойства во многом подобны свойствам волновода, используемого в технике СВЧ.

Мы привыкли к тому, что свет распространяется прямолинейно. Но это совершенно не относится к световоду. Его можно изгибать, разветвлять, отбирать из него часть энергии. С помощью световодов можно смешивать два оптических сигнала. В принципе весь арсенал средств и изделий СВЧ волноводной техники можно перенести в оптический диапазон. Можно сделать, например, оптический приемник гетеродинного типа миниатюрных размеров.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука