Следующий прибор произвел подлинную революцию в геодезии и картографии. Назначение его ясно из названия — светодальномер. Прежде чем составить подробную и точную карту местности, необходимо найти и обозначить пункты, координаты которых были бы хорошо известны. Относительно их можно определять координаты и других пунктов: улиц, домов, холмов, оврагов, рек и озер. Вы неоднократно видели на возвышенных местах ажурные деревянные или металлические башни — геодезические сигналы. Они cтроятся над опорными пунктами геодезической сети. С одного сигнала обязательно видно два-три других. Ранее сигналы называли триангуляционными вышками, поскольку вся сеть строилась с помощью метода триангуляции[4]. Между двумя анналами как можно точнее измерялось расстояние, например, мерной лептой или проволокой. Это расстояние называется
Принцип работы свстодальномера несложен. Прибор содержит лазер излучатель света, модулятор и передающую оптику. В модуляторе установлен электрооптический кристалл, изменяющий свои параметры под действием электрического сигнала. Обычно используют синусоидальный сигнал с частотой 10…150 МГц (измерительная частота). Промодулированный кристаллом лазерный луч проходит к отражателю, установленному на другом конце измеряемой трассы. Отражателями служат трипель-призмы — стеклянные призмы с тремя взаимно перпендикулярными гранями. Они обладают важным свойством зеркально отражать луч именно в том направлении из которого этот луч пришел. Поэтому никакого наведения отражателя не требуется, надо лишь поставить его примерно перпендикулярно приходящему лучу. Трипель-призма является оптическим аналогом радиолокационного уголкового отражателя.
Отраженный свет попадает в приемную оптику и на фотоприемник. На выходе приемника выделяется модулирующий сигнал, но фаза его запаздывает относительно фазы сигнала в модуляторе оптического передатчика. Измерив разность фаз, можно затем рассчитать и расстояние до отражателя. В современных дальномерах это делает встроенный микропроцессор, и результат — дистанция в миллиметрах выдается на многоразрядный цифровой дисплей.
Наконец, третий пример, оптрон. Это уже не прибор, перекрывающий большие расстояния, а элемент электронных схем. Оптрон представляет собой пару: светодиод — фотодиод, объединенные в одном непрозрачном корпусе. Выводы светодиода и фотодиода электрически не соединены друг с другом, поэтому оптрон может служить прекрасным элементом связи или развязки между электрическими или электронными устройствами. В качестве примера можно привести случай, когда нужно вывести информацию из установки, находящейся под высоким напряжением, а соединительные провода использовать нельзя из-за ограниченной электрической прочности изоляции или по условиям техники безопасности.
Конструкции оптронов могут быть самыми разными. Если высоковольтной изоляции не требуется, то весь оптрон, включая светодиод и фотодиод, выполняется в виде единой конструкции. Такие оптроны часто используют как элементы электронных схем, например в качестве элемента связи в триггерах, мультивибраторах или операционных усилителях. Интересна конструкция оптрона с открытым воздушным оптическим каналом. Он допускает механическую модуляцию светового потока. Предположим, что требуется с высокой точностью знать частоту вращения вала. На вал насаживают обтюратор — диск с чередующимися прозрачными и непрозрачными секторами. Секторы прерывают поток света в оптическом канале оптрона, и на выходе фотодиода появляются импульсы, следующие с частотой, кратной частоте вращения. Другое применение — счет деталей на конвейере и тому подобное.