Читаем Посвящение в радиоэлектронику полностью

Это не совсем удобно, поэтому в радиолокации предпочитают зеркальные антенны, а рупор используют в качестве облучателя зеркала. Ход волн-лучей в антенне с параболическим зеркалом ясен из рисунка. Чем больше размеры антенны, тем уже ее диаграмма направленности. Угловая ширина диаграммы направленности φ связана с размером антенны уже знакомой нам формулой φ = λ/D, где угол φ выражается в радианах. Например, круглое зеркало диаметром 3 м при длине волны 3 см создает игольчатую диаграмму направленности с шириной лепестка всего 0,01 рад, или 0,57°.

-

Параболические антенны.

Диаграмма игольчатого типа нужна далеко не всегда. Например, для корабельной РЛС важно определить пеленг объекта (другого корабля), а его высоту определять не нужно. В этом случае целесообразно выбрать диаграмму направленности «ножевого» типа — узкую в горизонтальной плоскости и широкую в вертикальной.

Диаграмму «ножевого» типа создает антенна с прямоугольным раскрывом, широким в горизонтальной плоскости и узким — в вертикальной. Подобные же антенны используют и в самолетных РЛС кругового обзора. Более того, чтобы скомпенсировать естественное ослабление сигналов, приходящих с больших дальностей, используют косекансную диаграмму, показанную на рисунке. Она формируется благодаря специальной форме зеркала. Только не подумайте, что зеркала антенн радиолокаторов действительно имеют зеркальную поверхность. Этого совсем нс требуется. Любая поверхность будет зеркальной для длин волн, намного больших, чем размер неоднородностей поверхности. Обычно считают, что размер неоднородностей не должен превосходить 1/8 длины волны, т. е. λ/8. Для обычного оптического зеркала, отражающего световые волны с длиной 0,5 мкм, размер шероховатостей не должен превышать сотых долей микрометра. А зеркало локатора, работающего на длине волны 10 см, можно выполнить даже из металлической сетки с размером ячеек около 1 см. Так обычно и делают, чтобы уменьшить массу зеркала и ветровую нагрузку.

Косекансная диаграмма направленности самолетной РЛС с ИКО

Но вернемся к генераторам. В годы второй мировой войны были разработаны конструкции принципиально новых генераторов сантиметровых волн — клистронов и магнетронов. В клистроне электронный луч формируется подобно тому, как это делается в ЭЛТ. Луч проходит последовательно через два объемных резонатора, настроенных на одну и ту же частоту. Если к первому резонатору подвести СВЧ колебания, луч окажется промодулированным по скорости. Электроны, пролетевшие резонатор за один полупериод колебаний, ускоряются, поскольку электрическое поле «подталкивает» их, а электроны, пролетевшие за второй полупериод, замедляются, так как их тормозит электрическое поле, и их скорость уменьшится. По пути ко второму резонатору электроны сгруппируются в «пакеты», поскольку «быстрые» электроны догонят «медленные». На еще большем расстоянии пакеты электронов снова рассеются, но для нас это уже неважно. Там, где электроны сгруппировались, стоит второй резонатор и возбуждается пакетами электронов или волнами их пространственного заряда. Энергия колебаний, отдаваемая электронами во второй резонатор, оказывается намного больше энергии, затраченной на модуляцию электронного луча. Так действует клистрон-усилитель. В генератор его превратить несложно, достаточно часть энергии из второго резонатора направить обратно, в первый.

Еще оригинальнее решена проблема генерации в отражательном клистроне. Он содержит только один резонатор. Пролетевшие сквозь резонатор электроны возвращаются обратно специальным электродом-отражателем, на который подан отрицательный потенциал — Uотр. Сгруппированные пакеты снова пролетают сквозь резонатор, отдавая запасенную энергию. Отражательные клистроны долгие годы служили гетеродинами в радиолокационных приемниках.

Клистрон-усилитель и отражательный клистрон.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука