Читаем Посвящение в радиоэлектронику полностью

Импульсный модулятор с накопительным конденсатором имеет один существенный недостаток. По мере расходования заряда конденсатора при генерировании радиоимпульса напряжение на нем быстро падает, а с ним и мощность высокочастотных колебаний. В результате генерируется остроконечный радиоимпульс с пологим спадом. Гораздо выгоднее работать с прямоугольными импульсами, мощность которых в течение их длительности остается примерно постоянной. Прямоугольные импульсы будут генерироваться описанным генератором, если накопительный конденсатор заменить искусственной длинной линией, разомкнутой на свободном конце: например, может использоваться отрезок коаксиального кабеля. Волновое сопротивление линии должно равняться сопротивлению генератора ВЧ колебаний со стороны зажимов питания, т. е. отношению его анодного напряжения к анодному току. В момент поджигания тиратрона вдоль длинной линии побежит волна напряжения, разряжающая линию. Процесс закончится, когда волна напряжения, отразившись от разомкнутого конца линии, вернется к аноду тиратрона. Линия будет разряжена полностью, и тиратрон погаснет. Таким образом, длительность импульса определяется длиной линии и равна отношению удвоенной длины линии к скорости распространения волн в ней. Генераторы модулирующих импульсов с искусственными длинными линиями получили самое широкое распространение в радиолокационной технике.

Для перехода к дециметровым, а потом и к сантиметровым волнам ВЧ генератор с двухпроводными линиями оказался непригодным. Ведь длина линии составляет менее четверти длины волны, так какой же она должна быть на волне, скажем, 3 см? Кроме того, время пролета электронов в лампе оказывается больше периода колебаний, что полностью нарушает работоспособность триода. И здесь нашли выход. Длинные линии-контуры заменили объемными резонаторами. Что же это такое? Поясним на примере. Возьмем ВЧ контур, содержащий индуктивность в виде катушки всего из одного витка и небольшой конденсатор. Будем стараться повысить его резонансную частоту, не уменьшая размеров. Но как, разве это можно? Можно. Подключим вторую такую же катушку — виток параллельно первой. Общая индуктивность уменьшится, а частота возрастет. Подключим третью, четвертую и т. д., пока витки не образуют сплошную стенку вокруг конденсатора. Получился тороидальный объемный резонатор. Раздвинем пластины, чтобы уменьшить емкость и еще повысить частоту. Образовался цилиндрический объемный резонатор. Его размеры составляют от нескольких длин волн до половины длины волны, соответствующей резонансной частоте. Энергия подводится к объемному резонатору и выводится из него с помощью штыря, петли или отверстия связи.

От колебательного контура к тороидальному объемному резонатору.

Цилиндрический и прямоугольный резонаторы.

Объемный резонатор не обязательно должен быть цилиндрическим, он может быть и прямоугольным. Если длину прямоугольного резонатора увеличивать до бесконечности, мы получим волновод — полую металлическую трубу прямоугольного сечения, в которой может распространяться высокочастотная энергия. На сантиметровых волнах двухпроводные фидерные линии сильно излучают, а коаксиальные вносят большие потери. Поэтому передача колебаний к антенне осуществляется только с помощью волноводов.

В волноводах и объемных резонаторах уже трудно говорить о токах или напряжениях. Там существуют электрическое Е и магнитное Н поля, т. е. те же поля, что в электромагнитной волне, распространяющейся в свободном пространстве. Таким образом, в волноводе (в соответствии с его названием) распространяется уже хорошо нам знакомая электромагнитная волна. На рисунке стрелками показаны направления электрического (сплошные линии) и магнитного (штриховые линии) полей.

Волновод.

Энергию волны из волновода в открытое пространство простым и естественным образом можно передать с помощью рупорной антенны. Хорошая рупорная антенна должна быть длинной, поскольку любые неоднородности в волноводе приводят к отражению распространяющейся энергии. Переход от волновода к рупору как-раз и является такой неоднородностью, поэтому он должен быть достаточно плавным. Есть и еще одно соображение в пользу длинных рупоров. Чтобы правильно сформировалась диаграмма направленности, поле в раскрыве антенны должно быть синфазным. Это значит, что колебания поля электромагнитной волны в различных точках раскрыва должны происходить одновременно. Но при распространении от рупора и вдоль его грани волна проходит разный путь и колебания на краях раскрыва запаздывают относительно колебаний в центре. Если разница путей достигнет четверти, или даже половины длины волны, рупорная антенна окажется неэффективной. Для уменьшения указанной разницы путей, рупорные антенны делают длинными.

Рупорная антенна.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука