Читаем Портрет трещины полностью

Если механические, так сказать внешние особенности протекания усталости достаточно ясны, то с физическим механизмом процесса дело куда сложнее. Начнем с пластической деформации. Отличительной особенностью пластического течения при усталости является его сосредоточенность в меньшем объеме, чем при одноразовом нагружении. И в том, и в другом случаях механизм пластической деформации дислокационный, однако, вместо появления все большего числа линий скольжения при обычном деформировании усталость сопровождается образованием ограниченного количества линий скольжения с последующим их расширением. Это общая фундаментальная закономерность усталости – высокая неоднородность всех процессов по сечению металла. Усталость- процесс, способный «выбирать» самые слабые звенья прочности и сосредоточивать на них свои подтачивающие усилия. При этом свойства основного массива металла могут быть и не затронуты разрушением. Приведем некоторые примеры «коварства» избирательности усталостного разрушения.

Прежде всего оказывается, что концентрация напряжений при усталости ведет к охрупчиванию металла гораздо быстрее, чем в условиях обычного нагружения. При многоцикловом нагружении металл становится более чувствительным к самым разнообразным концентраторам: дефектам на поверхности, надрезам любых видов и сортов, участкам коррозии.

В частности, такими концентраторами всегда являются неметаллические включения. Но при усталости они становятся подлинно опасными, потому что многоцикловое нагружение сразу же сосредоточивает пластическую деформацию вокруг включений и уже на ранних стадиях, когда основной металл еще здоров, зарождает на включении микротрещину. Этому способствует и то, что со временем включение, которое после выплавки металла было прочно «вклеено» в матрицу, отрывается от нее – теряет связь с металлом; концентрация напряжений сра-

зу возрастает и вероятность протекания скольжения и микроразрушения вокруг включения резко увеличивается.

Эта неоднородность деформирования по сечению «утомляющегося» металла и ведет к тому, что общая энергия, затрачиваемая на пластическую деформацию циклично нагружаемого металла, меньше, чем при обычном деформировании. Вот и получается, что неоднородность и избирательность разрушения «спасают» металл в целом и от деформации, и от разрушения. Но все же в его объеме найдутся одно-два слабых места – пожива для процесса усталости. Таким образом, металл может быть выведен из строя сосредоточенным разрушением на считанных участках, уязвимых для зарождения усталостной трещины. Что касается общих мощнейших ресурсов прочности металла, то они остаются неиспользованными. В этом-то и опасность усталости, выискивающей в металле слабые звенья и обыгрывающей их.

В избирательности и заключается основная проблема обеспечения прочности металла, противопоставляемой возможной усталости. Металл должен быть равнопрочным во всей своей структуре. Но для реального металла это невозможно – он неоднороден от рождения. И потому, что он – поликристалл, и потому, что он – сплав, и потому, что в нем разбросаны разнообразнейшие примеси и дефекты. А следовательно, в нем изобилие слабых мест, которые безошибочно находит усталость. Ведь для разрушения достаточно лишь одного!

Каков физический механизм зарождения микроскопических трещин при циклическом нагружении? Прежде всего ими могут быть едва ли не все дислокационные механизмы, рассмотренные в первой главе. Но есть и специфические «усталостные» модели. Одной из них является схема, предложенная японским физиком Эиихи Фуд-зита. Когда в одной плоскости скольжения сближаются разноименные краевые дислокации, то у одной из них экстраплоскость находится вверху, а у другой – внизу. Естественно, что они соединяются и дислокации исчезают – аннигилируют. А теперь представьте себе те же дислокации, но на разных и очень близких плоскостях скольжения. У основания каждой из экстраплоскостей – пустое пространство, немного большее, чем между атомами в здоровой классической решетке. Эти пустоты двух разноименных дислокаций сливаются и образуют

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука