Подобные же процессы, но в ином масштабе могут протекать при неоднородном распределении химических элементов по сечению изделия. Например, в условиях так называемой химико-термической обработки, заключающейся в насыщении поверхности металла каким-нибудь другим элементом. При этом в области высоких температур формируется аустенит иного химического состава, с иными скоростями и особенностями превращения в мартенсит.
На эти явления налагаются и внутренние напряжения, имеющие собственно термическое происхождение и образующиеся из-за неодинакового расширения и сжатия различных структурных составляющих при охлаждении и нагревании обрабатываемой детали.
Так или иначе, но термическая обработка стали генерирует довольно мощные напряжения, имеющие зачастую пространственный характер и приводящие к появлению в металле разнообразных трещин. Иногда это одинокие и глубокие трещины в изделиях сложной конфигурации, например во фрезах: иногда внутренние дугообразные разрывы, встречающиеся например, в цементированных сталях, то есть сталях, поверхность которых насыщена углеродом. Встречаются и другие виды разрушений – в форме, скажем, множества мельчайших трещин, покрывающих всю поверхность детали.
Чего уж хорошего, если в ответственной детали сто трещин. Ведь мы знаем: достаточно даже одной! Потому, что невозможно предсказать, как такая деталь по-
1 Малинкина Е. И. Образование трещин при термической обра» ботке стальных деталей. – М.: Машиностроение, 1965. С. 13-17.
ведет себя в напряженном рабочем состоянии. Поскольку дальновиднее предусмотреть худшее, можно ожидать разрушения за счет роста какой-то одной трещины, оказавшейся в наиболее «выгодном» положении. И тогда окажется справедливой печальная шутка, согласно которой у жертвы было обнаружено четыре раны: две из них смертельные, а две другие, к счастью, нет. Одним словом, трещины, возникающие при термической обработке, вредны и опасны.
Но, кроме того, существует ряд побочных причин, увеличивающих тревогу за обработанную деталь. Например, может оказаться, что величина приводящих к разрушению напряжений (создаваемых внешним или внутренним усилием) зависит от времени и убывает с его течением. В результате при длительном воздействии нагрузки прочность стали снижается в несколько раз. В некоторых сталях, в частности быстрорежущих, появление поверхностных трещин провоцируется так называемым обезуглероженным слоем, то есть поверхностной пленкой металла, из которой по тем или иным причинам «ушел» углерод. Стали, подвергаемые термической обработке, очень чувствительны к любым концентраторам напряжений (различным надрезам) на их поверхности и внутри материала. Это и понятно. Такой концентратор создает свое упругое (силовое) поле, суммирующееся с остаточными напряжениями и ведущее к преждевременному разрушению. Не последнюю роль играют и разнообразные избыточные фазы в стали, особенно расположенные по границам зерен. Часто они играют решающую роль в образовании трещин после закалки. Словом, серьезных причин много. Но бывают и несерьезные, приводящие тем не менее к серьезным последствиям.
Термическая обработка, в частности закалка стали, повышает ее механические свойства и поэтому совершенно необходима машиностроению. Но вместе с тем она вводит в металл трещины, смертельно опасные для конструкции. К счастью, есть многочисленные методы, позволяющие исключить появление трещин и сохранить тем самым преимущества, которые дает термическая обработка металла. Методы эти не всегда просты, но…
Одна закона грубая скрижаль равна для человека и металла: нужна борьба, чтоб сталью стала сталь…
(Я- Белинский)
Вы, вероятно, помните, что так называемые внутренние напряжения и есть ложка дегтя, которая портит бочку меда при термической обработке стали. Именно они и ведут к появлению трещин. Следовательно, первейшей задачей является гашение напряженного состояния детали. Сделать это можно несколькими путями. Вот один из них. Помимо структурных напряжений, возникают и другие- термические. Они появляются при более высоких температурах, когда металл еще очень пластичен, а фазовые переходы еще не начались. Очевидно, при достаточно высокой скорости охлаждения эти напряжения могут привести к пластической деформации детали и разрядиться, то есть стать не опасными.
Со структурными остаточными напряжениями, как правило, дело обстоит наоборот – быстрое охлаждение при довольно низких температурах вызывает лишь многие трещины. Поэтому целесообразно при температурах ниже начала перехода аустенита в мартенсит вести охлаждение бережно и очень медленно. Такое «нежное» обращение со сталью осуществляют зачастую, закаливая ее не в воде, а в масле, где она «остывает» с меньшей скоростью. Ясно, что во всех случаях внутренние напряжения будут определяться той исходной температурой, с которой начинается закалка. Поэтому рекомендуется эту температуру выбирать максимально низкой.