Читаем Под знаком кванта полностью

полная неразличимость отдельных бросаний; случайность исхода любого отдельного бросания, которая проистекает от полного незнания начальных условий каждого опыта, то есть от неопределенности начальных координаты и импульса монеты.

Все три условия выполняются в атомных явлениях, и в частности в опытах по рассеянию электронов. В самом деле:

электрон как частица должен рассеиваться независимо от других;

электроны так бедны свойствами (заряд, масса, спин — и это все), что в квантовой механике они неразличимы, а вместе с тем неразличимы и отдельные акты рассеяния;

и, наконец, главное: точные значения координат и импульсов электронов нельзя задать в принципе, поскольку это запрещено соотношением неопределенностей Гейзенберга.

В таких условиях бессмысленно искать траекторию каждого электрона. Вместо этого мы должны научиться вычислять вероятность р(х) попадания электронов в определенное

место х фотопластинки (или, как принято говорить в физике, вычислить функцию распределения р(х)).

При игре в «орел — решку» это очень просто: даже без вычислений ясно, что вероятность выпадания «орла» равна 1 /2. В квантовой механике дело немного осложняется. Чтобы вычислить функцию р(х), описывающую распределение электронов на фотопластинке, необходимо решить уравнение Шрёдингера.

Макс Борн утверждал: вероятность р(х) найти электрон в точке х равна квадрату волновой функции ф(х): p(x)=|t|>(x)|2.

График функции р(х) выглядит сложнее, чем диаграмма эллипса рассеяния при стрельбе в тире. Но если вид эллипса нам предсказать не под силу, то функцию р(х) мы можем вычислить заранее. Ее вид однозначно определяется законами квантовой механики; несмотря на свою необычность, они все-таки существуют, чего нельзя сказать с уверенностью о законах поведения человека, от которого зависит эллипс рассеяния.

<p><emphasis>ЭЛЕКТРОННЫЕ ВОЛНЫ</emphasis></p>

Когда мы стоим на берегу моря, то у нас не возникает сомнений, что на берег набегают волны, а не что-либо иное. И нас не удивляет тот достоверный факт, что все они состоят из огромного числа частиц-молекул.

Волны вероятности — такая же реальность, как и морские волны. И нас не должно смущать то обстоятельство, что они построены из большого числа отдельных независимых и случайных событий.

Морской воде присущи и свойства волн, и свойства частиц одновременно. Это нам кажется естественным. И если мы удивлены, обнаружив такие же свойства у вероятности, то наше недоумение по крайней мере нелогично.

Когда дует ветер, то в море из беспорядочного скопления отдельных молекул возникают правильные ряды волн. Точно так же, когда мы рассеиваем пучок электронов, то отдельные случайные события — следы электронов — закономерно группируются в единую волну вероятности, описывающую распределение этих следов.

Чтобы убедиться в реальности морских волн, необязательно попадать в кораблекрушение,— достаточно взглянуть на море. Чтобы обнаружить волны вероятности, нужны

173

специальные приборы и тщательные опыты. Конечно, эти опыты сложнее, чем простой взгляд с прибрежного утеса к горизонту, но ведь нельзя же только на этом основании отрицать само существование вероятностных волн. В таком случае впору усомниться в существовании вирусов, генов, атомов, электронов — короче, всех явлений, недоступных непосредственному восприятию.

Полистав толстые учебники гидродинамики, можно убедиться, что пути молекул, из которых состоит морская волна, ничем не напоминают волновых движений: они движутся по кругам и эллипсам вверх и вниз и вовсе не участвуют в поступательном движении волны. Они составляют волну, но не следуют за ее движением. Форму этой волны определяют законы гидродинамики.

Точно так же движение отдельных электронов в атоме вовсе не похоже на те колебания, которым мы уподобили их раньше. Но в целом ненаблюдаемые пути электронов принадлежат единому наблюдаемому ансамблю — волне вероятности. Форму этой волны диктуют законы квантовой механики.

Аналогии такого рода можно продолжать и дальше, но сейчас важнее понять другое: как теперь надо понимать слова «электрон — это волна»? Ведь если это не материальная волна, а волна вероятности, то ее даже нельзя обнаружить, проводя опыт с отдельным электроном.

Иногда волновой характер квантовомеханических явлений трактуют как результат некоего особого рода взаимодействия большого числа частиц между собой. Это объяснение мотивируют как раз тем, что волновые и статистические закономерности атомных явлений вообще нельзя обнаружить, если проводить опыты с отдельно взятой атомной частицей. Ошибка таких рассуждений объясняется элементарным непониманием природы вероятностных законов: вычислить волновую функцию ф(х) и распределение вероятностей р(х) можно для отдельной частицы. Но измерить распределение р(х) можно только при многократном повторении однотипных испытаний с одинаковыми частицами. (Сам Борн говорил об этом так: «Движение частиц следует законам вероятности, сама же вероятность распространяется в согласии с законами причинности».)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука