/67 дет примерно в половине случаев и закон этот выполняется тем точнее, чем больше испытаний мы проведем. Тем не менее это знание не поможет нам предсказать исход каждого отдельного бросания монеты. В этом и состоит главная особенность законов случая: понятие вероятности применимо к
Очень важно, чтобы испытания были действительно однотипными, то есть полностью неразличимыми, поскольку только тогда измеренное число-вероятность можно использовать для характеристики каждого отдельного случайного события, которое является одним из возможных исходов испытания.
Непривычные особенности законов случая имеют естественное объяснение. В самом деле, бросание монеты — очень непростой процесс. Мы не хотим или не умеем изучать его во всей сложности и стремимся узнать только конечный результат испытания. Такое пренебрежение к деталям процесса не проходит даром — теперь достоверно мы можем предсказать только усредненный результат многочисленных однотипных испытаний, а для каждого отдельного случайного события мы в состоянии указать лишь вероятный его исход.
Широко бытует заблуждение, что вероятностное описание движения менее полно, чем строго причинное, классическое, с его понятием траектории. С точки зрения классической механики это действительно так. Однако, если мы откажемся от части ее жестких требований (например, от знания начальных координат и импульсов частиц), тогда классическое описание становится сразу же бесполезным. На смену ему приходит вероятностное описание, и в новых условиях оно будет столь же исчерпывающим, поскольку сообщает нам все сведения о системе, которые можно узнать о ней с помощью опыта.
При игре в «орел — решку» мы намеренно не хотим знать начальные положение и скорость монеты и целиком полагаемся на волю случая. Наоборот, приходя в тир, мы всегда стремимся попасть в центр мишени. Но, несмотря на это — достаточно сильное — желание, мы никогда заранее не знаем, в какое место мишени попадет каждая из пуль. После стрельбы отверстия в мишени группируются в довольно правильный овал, который принято называть «эллипсом рассеяния». Его форма зависит от многих причин.
Для того чтобы все пули, вылетающие из винтовки, попадали всегда в одну и ту же точку мишени, необходимо им
всем в момент вылета иметь одни и те же начальные координаты
Как и при игре в «орел — решку», эту вероятность можно измерить. Допустим, мы произвели 100 выстрелов и 40 раз попали в «десятку», 30 раз — в «девятку», 15 — в «восьмерку» и так далее — до нуля. Тогда вероятность попадания в «десятку», «девятку», «восьмерку» и т. д. соответственно
IFio = 4O/1OO = O,4,
№9 = 0,3, 1^8 = 0,15 и т. д.
Можно даже построить диаграмму эллипса рассеяния, отложив по горизонтали числа 1, 2, 3, ..., а по вертикали — вероятности попадания в соответствующие им области мишени.
Если мы возьмем теперь точно такую же мишень и вновь 100 раз по ней выстрелим, то расположение отверстий на ней будет совсем другим, чем на первой мишени. Но число попаданий в «десятку», «девятку» и т. д. останется примерно тем же самым, а следовательно, и диаграмма эллипса рассеяния также останется без изменений. Конечно, для разных стрелков диаграммы различны: для опытного стрелка она уже, для неопытного — шире. Но для каждого отдельного стрелка она остается неизменной, так что опытный тренер по одному виду мишени может установить, кому из его учеников она принадлежит.
Даже на этом простом примере видно, что «законы случая» — не пустая игра слов. Конечно, каждая из пуль попадает в случайную точку мишени, которую нельзя предсказать заранее. Однако при большом числе выстрелов попадания образуют настолько закономерную картину, что мы воспринимаем ее как достоверную и совершенно забываем о вероятности, лежащей в ее основе.
Простой пример со стрельбой напоминает опыты квантовой механики значительно больше, чем это может показаться на первый взгляд. Чтобы убедиться в этом, заменим ружье «электронной пушкой», мишень — фотопластинкой, а между ними поместим тонкую металлическую фольгу.