Эта очень важная формула справедлива и в квантовой механике, только под оо там надо понимать не геометрическое сечение ядра о0 = лго, а некоторое другое, «эффективное сечение», которое может быть как меньше, так и больше геометрического,— в зависимости от вида реакции, которую мы изучаем. Нанример, если мы интересуемся только теми столкновениями дробинок с «ядрами», при которых последние раскалываются, то ясно, что число таких столкновений всегда меньше, чем число простых попадании.
Это уменьшение можно учесть е помощью некоторого коэффициента
Величину
В ядерной физике сечения принято измерять в специальных единицах
1 барн = 1 б==10“24 см2
Барн — это английское слово «Ьагп», то есть «амбар». Очевидная несообразность этого термина объясняется историей его происхождения. Во время войны все работы по делению урана в Америке были строго засекречены. Поэтому даже в секретных отчетах писали не 2э1и или 29?Ри, а элемент-25 и элемент-49 — по последним цифрам атомного номера и массового числа элементов. Точно так же значения сечений ядерных процессов сообщали в засекреченных единицах площади — «барнах». «Потому что,— объясняли физики, предложившие этот термин,— в ядерной физике сечение 10“24 см2 — такая же большая величина, как амбар в обычной жизни». Но, несмотря на грустную анекдотичность своего происхождения, термин этот прижился. За единицу измерения сечений барн выбран, конечно, не столь случайно, как
слово для его обозначения. Радиусы ядер меняются от го = = 0,13» 10“12 см (для водорода) до го=О,8»1О“12 см (для урана), и, следовательно, их геометрические сечения о0= = лг2 заключены в пределах от 0,05 до 2,1 барн, то есть соизмеримы с выбранной единицей сечения.
До сих пор мы молчаливо предполагали, что эффективные сечения реакций не зависят от энергии налетающих частиц. Можно подозревать, что это — очень грубое допущение, и опыт подтверждает наше сомнение. В действительности эффективные сечения очень прихотливо зависят от энергии столкновений, а для разных реакций могут различаться в десятки, тысячи и миллионы раз. Одна из заслуг квантовой механики состоит как раз в том, что она дает способ вычислить эти сечения и тем самым определить относительную вероятность различных ядерных реакций. Из формул квантовой механики следует также, что эффективное сечение упругого рассеяния ядер не равно их геометрическому сечению. Это — важное утверждение, и мы к нему еще вернемся.
Судьбу атомной энергии решили эффективные сечения взаимодействия нейтронов с ядрами, или, коротко,
В отличие от а-частиц нейтрон лишен электрического заряда и всегда притягивается короткодействующими ядер-ными силами. Поэтому с точки зрения нейтрона ядро — это не вулкан, а воронка, которую он может с ходу проскочить, а может и застрять в ней. В рамках этой аналогии легко поверить, что быстрому нейтрону «ядерную воронку» проскочить легче, чем медленному. Это и в самом деле верно: для
нейтронов с энергией 1 МэВ или больше сечения ядерных реакций примерно совпадают с геометрическими сечениями ядер; однако при меньших энергиях столкновения эффективные сечения ведут себя весьма причудливо.