В этот раз, продолжая довоенные измерения своего ассистента Марсдена, он обнаружил, что при прохождении а-частиц через обыкновенный воздух возникают какие-то новые частицы, пробеги которых значительно больше пробегов исходных а-частиц. Довольно скоро Резерфорд выяснил, что вторичные частицы — это протоны, и возникают они при столкновениях а-частиц с ядрами азота. Но как? Резерфорд допускал две возможности: либо, сталкиваясь с ядром азота, а-частица выбивает из него протон, в результате чего оно превращается в ядро углерода:
а+ ’|N--> а + ’iC + p,
либо же а-частица застревает в ядре азота и превращает его в ядро кислорода:
a + ’|N--->’78О + р.
Шесть лет спустя сотрудник Резерфорда Патрик Мейнард Стюарт Блэккет (1897—1974) наблюдал эту
В последующие четыре года Резерфорд совместно с Джеймсом Чэдвиком (1891 —1974) установил, что при обстреле а-частицами по крайней мере еще десяток элементов — вплоть до калия — вступают в ядерные реакции. Но на этом возможности а-частиц были исчерпаны: заряд калия равен 19, заряд а-частицы — 2, и ее энергии уже не хватало, чтобы преодолеть отталкивание ядер с зарядами, большими 20. Заряд протона вдвое меньше, поэтому в качестве снаряда для обстрела ядер он предпочтительнее а-частиц. Но где взять протоны больших энергий? Радиоактивных элементов, испускающих протоны, в природе не существует.
Тогда-то впервые и возникла идея
Кокрофт и Уолтон уже в 1932 г. осуществили в лаборатории Резерфорда первую ядерную реакцию, вызванную ускоренными протонами. Обстреливая мишень из лития протонами, ускоренными до энергии 0,2 МэВ, они обнаружили, что примерно один протон из миллиарда расщеплял ядро лития на две а-частицы, которые с огромной энергией по 8,5 МэВ каждая разлетались в противоположные стороны: р + Ю --> гНе + гНе.
Эта ядерная реакция стала столь же знаменитой, как и первая реакция Резерфорда по превращению азота в кислород. Сравнивая энергии в начале и в конце этой реакции (0,2 и 17 МэВ), в пору усомниться в законе сохранения энергии, если, конечно, не принимать во внимание формулу Эйнштейна
до реакции после реакции
сумма: 8,021635 а.е.м. сумма: 8,003012 а.е.м.
Дефект массы Дт=0,018623 а.е.м. Выделившаяся энергия
Е=Д/п«931,5 МэВ =17,3 МэВ.
Согласитесь, что стоило проделать этот простой расчет, чтобы убедиться в справедливости одного из самых фундаментальных законов природы.
Нейтрон — это ключ, открывший доступ к запасам внутриядерной энергии. Теперь мы знаем о нем много: он лишен заряда, его масса
В свободном состоянии нейтрон довольно быстро, с периодом полураспада 10,7 мин, распадается на протон, электрон и электронное антинейтрино по схеме
п--> p+e + v.
В ядре нейтрон связан прочными ядерными силами и, как правило, стабилен, но иногда испытывает распад по обычной схеме, причем протон остается в ядре, а электрон и антинейтрино излучаются. Именно эти электроны мы воспринимаем как р-лучи радиоактивных элементов. Ядерные силы существенно меняют свойства нейтронов и в зависимости от типа ядра период его p-распада может быть самым разным: от сотых долей секунды до нескольких миллиардов лет.