77. Ленч в час дня. Один читатель написал нам, что дом его друга в
Какое расстояние проехал наш читатель по направлению к
78. Гуляющий пассажир. Поезд движется со скоростью 60 км/ч. Пассажир из хвоста поезда идет в его начало по переходам между вагонами со скоростью 3 км/ч. С какой скоростью он движется относительно железнодорожного полотна?
Мы не собираемся в данном случае заниматься софизмами, вроде апории Зенона с летящей стрелой, или теорией относительности Эйнштейна, а говорим о движении в обычном смысле слова по отношению к железнодорожному полотну.
79. Встречные поезда. На станции Вюрцльтаун одна старая леди, выглянув из окна, крикнула:
— Дежурный! Сколько отсюда ехать до Мадвилля?
— Все поезда идут 5 часов в любую сторону, мэм, — ответил тот.
— А сколько поездов встретится мне по пути?
Этот нелепый вопрос озадачил дежурного, но он с готовностью ответил:
— Поезда из Вюрцльтауна в Мадвилль и из Мадвилля в Вюрцльтаун отходят в пять минут первого, пять минут второго и так далее с интервалом ровно в один час.
Старая леди заставила одного из своих соседей по купе найти ответ на ее вопрос.
Так сколько же поездов встретится ей по пути?
80. Два чемодана. Одному джентльмену нужно было добраться до железнодорожной станции, расположенной в 4 км от дома. Его багаж состоял из двух одинаково тяжелых чемоданов, унести которые одному было не под силу. Садовник и слуга джентльмена настаивали на том, чтобы нести багаж доверили им. Но садовник был слишком стар, а слуга — слишком слаб. Джентльмен же настаивал на том, чтобы каждый принял равное участие в переноске багажа, и ни за что не хотел отказаться от своего права нести чемоданы причитающийся ему отрезок пути.
Садовник и слуга взяли по чемодану, а джентльмен, шагая налегке, думал, как ему надлежит действовать, чтобы все трое затратили равный труд.
Так как же?
81. Эскалатор.
— Спускаясь вниз по эскалатору, я насчитал 50 ступенек, — сказал Уокер.
— А я насчитал 75, — возразил Тротмен, — но я спускался в три раза быстрее вас.
Если бы эскалатор остановился, то сколько ступенек можно было бы насчитать на его видимой части? Предполагается, что оба человека двигались равномерно и что скорость эскалатора постоянна.
82. Тележка. «Три человека, — сказал Крэкхэм, — Аткинс, Браун и Крэнби, решили отправиться в небольшое путешествие. Им предстоит путь в 40 км. Аткинс идет со скоростью 1 км/ч, Браун — со скоростью 2 км/ч, а Крэнби на своей тележке, в которую запряжен ослик, делает 8 км/ч. Какое-то время Крэнби везет Аткинса, затем высаживает его, чтобы тот оставшееся расстояние прошел пешком, затем возвращается за Брауном и везет его до конечного пункта, причем все трое прибывают туда одновременно.
Сколько длилось путешествие? Разумеется, все это время приятели двигались с постоянной скоростью».
83. Четыре велосипедиста. Четыре одинаковых круга изображают четыре гаревые дорожки. Четверо велосипедистов стартуют из центра в полдень. Каждый движется по своему кругу со скоростями: первый — 6 км/ч, второй — 9, третий — 12 и четвертый — 15 км/ч. Они договорились ездить до тех пор, пока все в четвертый раз не встретятся опять в центре. Длина каждой круговой дорожки равна ⅓ км.
Когда произойдет встреча?
84. Три машины. Три машины едут по дороге в одном направлении и в некоторый момент времени располагаются относительно друг друга следующим образом. Эндрюс находится на некотором расстоянии позади Брукса, а Картер — на расстоянии, вдвое превышающем расстояние от Эндрюса до Брукса, перед Бруксом. Каждый водитель едет с постоянной скоростью, и Эндрюс нагоняет Брукса через 7 мин, а затем еще через 5 мин догоняет Картера.
Через сколько минут после Эндрюса Брукс догонит Картера?
85. Муха и автомобили. Длина дороги 300 км. Автомобиль
1) Когда муха встретит
2) Если бы, встретив
86. Лестницы метро. Как-то, выходя из станции метро «Керли-стрит», мы столкнулись с молодым атлетом Перси Лонгмеиом. Он остановился на эскалаторе и сказал: