То обстоятельство, что листья растений следуют определенному образцу, первым отметил древнегреческий ученый Феофраст (ок. 372 – ок. 287 гг. до н. э.) в своем труде «История растений»: «У тех, у которых листья плоские, они располагаются через правильные промежутки». Плиний Старший (23–79 гг. н. э.) отметил то же явления в своей масштабной «Естественной истории», где тоже пишет о правильных промежутках между листьями, расположенными на ветке по кругу. До XV века исследования филлотаксиса недалеко отошли от этих первых качественных наблюдений, но затем Леонардо да Винчи (1452–1519) нашел количественные закономерности в расположении листьев, отметив, что листья растут по спирали циклами по 5 (то есть под углом в 2/5 оборота). Связь между филлотаксисом и числами Фибоначчи первым почувствовал – интуитивно – астроном Иоганн Кеплер. Кеплер писал: «По образу и подобию таких саморазвивающихся последовательностей [имеется в виду рекурсивное свойство последовательности Фибоначчи], на мой взгляд, строится и развитие растений, так, например, в цветке проявлен природный символ этого качества – правильный пятиугольник».
Начало серьезному изучению наблюдаемого филлотаксиса положил Шарль Бонне. В своей книге «Исследования применения листьев растений» (
История же подлинно математического филлотаксиса, в противоположность чисто описательному подходу, начинается лишь в XIX веке в работах ботаника Карла Фридриха Шимпера (вышли в свет в 1830 году), его друга Александера Брауна (1835) и кристаллографа Огюста Браве и его брата-ботаника Луи (1837). Эти ученые обнаружили общее правило, согласно которому соотношения, описывающие филлотаксис, можно выразить дробями, состоящими из членов последовательности Фибоначчи (например, 2/5 или 3/8), а также отметили, что в парастихиях сосновых шишек и ананасов также проявляются закономерности, описываемые числами Фибоначчи.
И в самом деле, нет прелестнее иллюстрации филлотаксиса на основе чисел Фибоначчи, чем ананас (рис. 32). Каждая шестиугольная чешуйка на поверхности ананаса входит в три различные спирали. На рисунке хорошо видны один из восьми параллельных рядов, которые полого поднимаются из левого нижнего угла в правый верхний, один из тринадцати параллельных рядов, которые более круто поднимаются из правого нижнего угла в левый верхний, и один из двадцати одного параллельного ряда, которые поднимаются очень круто (тоже из левого нижнего угла в правый верхний). На поверхности у большинства ананасов видны пять, восемь, тринадцать или двадцать одна спираль разной степени крутизны. Все это числа Фибоначчи.
Откуда растения знают, что нужно расставлять листья по закономерностям Фибоначчи? Зона роста у растения расположены на верхушке стебля и называется «меристема» – она конической формы и заостряется кверху. Листья, которые отстоят от меристемы дальше всего, то есть самые старые, если смотреть сверху, дальше всего отходят от середины стебля, поскольку и сам стебель там толще. На рис. 33 показан подобный вид на стебель сверху, а листья пронумерованы в порядке появления. Лист номер 0 появился первым и теперь находится в самом низу, дальше всех от меристемы, и отстоит дальше всех от середины стебля. Важную роль такого представления для понимания сущности филлотаксиса первым подчеркнул ботаник А. Г. Черч в своей книге «Связь филлотаксиса с законами механики» (