Один взгляд на природу математики, традиционно именуемый платоническим, состоит в том, что математика вечна и всеобъемлюща и ее существование есть объективный факт, не зависящий от нас, людей. Согласно этому платоническому представлению математика была всегда, существовала в некоем абстрактном мире, а люди просто открыли ее, примерно как Микеланджело считал, что его скульптуры заключены внутри мраморных глыб и ему остается лишь убрать все лишнее. Золотое сечение, числа Фибоначчи, Евклидова геометрия и уравнения Эйнштейна – все это составные части платонической реальности, которая превосходит пределы человеческого разума. Сторонники платоновской точки зрения считают, что известный австрийский логик Курт Гёдель также был всей душой предан платонизму. Они подчеркивают, что он не просто говорил о математических понятиях, что и «они тоже могут отражать тот или иной аспект объективной реальности», но и его «теоремы о неполноте» сами по себе могут служить доводами в пользу платонического мировоззрения. Эти теоремы – вероятно, самые знаменитые результаты во всей истории логики – показывают, что для любой формальной системы аксиом (например, теории чисел) существуют утверждения, формулируемые на ее собственном языке, которые она не в состоянии ни доказать, ни опровергнуть. Иначе говоря, теория чисел, например, «неполна» в том смысле, что существуют истинные постулаты теории чисел, которые нельзя доказать методами, основанными на теории чисел. Чтобы доказать их, мы вынуждены перескочить в другую систему, богаче и выше уровнем, где опять же можно сформулировать истинные постулаты, которые нельзя доказать, не выходя из ее рамок, и так до бесконечности. Специалист по информатике и писатель Дуглас Р. Хофштадтер сухо сформулировал это в своей блистательной книге «Гёдель, Эшер, Бах. Эта бесконечная гирлянда»: «Понятие доказуемости у́же понятия истины». В этом отношении никогда не будет формального способа определить, взяв конкретное математическое утверждение, абсолютно ли оно истинно – точно так же как невозможно определить, верна ли та или иная физическая теория. Роджер Пенроуз, математик из Оксфорда, принадлежит к тем, кто уверен, что теоремы Гёделя – мощный довод в пользу существования платонического математического мира. В своей чудесной книге «Тени разума», которая подталкивает к интереснейшим размышлениям, Пенроуз говорит: «Гёдель доказал не то, что математика… – это произвольные поиски, направление которых определяется прихотью Человека; он доказал, что математика – это нечто абсолютное, и в ней мы должны не изобретать, но открывать… ни одна система “искусственных” правил не способна сделать это за нас». И добавляет: «Такая платоническая точка зрения была существенна для Гёделя» (Пер. А. Р. Логyнова и Н. А. Зубченко). Английский математик XX века Г. Г. Харди также был убежден, что функция человека – «открывать или наблюдать» математику, а не изобретать ее. Иначе говоря, абстрактный пейзаж математики существовал всегда и только и ждал, когда исследователи-математики его обнаружат.
Одна из предлагаемых разгадок этой тайны – почему математика так хорошо объясняет явления природы – опирается на интереснейшую модификацию идей Платона. Этот «модифицированный платонизм» отстаивает ту точку зрения, что законы физики выражаются математическими уравнениями, структура вселенной фрактальна, галактики самоорганизуются в логарифмические спирали и т. д. потому, что математика есть язык вселенной. А конкретнее, по-прежнему предполагается, что математические объекты существуют объективно и зависят отнюдь не от наших знаний о них, однако вместо того, чтобы выводить математику целиком и полностью в какой-то мифический абстрактный план, сторонники этой точки зрения считают, что она хотя бы отчасти находится в реальном мироздании. Если мы хотим наладить общение с разумными цивилизациями, от которых до нас 10 000 световых лет, нам нужно всего-навсего передать им число 1,6180339887… – и можно не сомневаться, что они поймут, что мы имеем в виду, поскольку Вселенная, несомненно, навязала и им точно такую же математику. Да, Бог – математик.
Такой модифицированный платонизм был, очевидно, присущ и Кеплеру (хотя у него он был подкрашен религиозностью), и именно его он выражал, когда писал, что геометрия «снабдила Бога образцами для сотворения мира и передала их Человеку наравне с образом и подобием Божиим, и воспринята она была, по сути дела, не глазами». Подобные же мысли были и у Галилео Галилея: