Сын торговца кожами, скромный чиновник по приему жалоб в кассационной палате Тулузы и великий математик Ферма также высказал Декарту через Мерсенна свои замечания по поводу идей, содержавшихся в «Диоптрике». Обнаружил Ферма и ряд недочетов в «Геометрии», послав ее автору свое сочинение «О наибольших и наименьших величинах», как бы дополнявшее работу философа. Декарт был явно раздосадован замечаниями Тулузского юриста и решил, как он писал в письме к Мерсенну, что Ферма направил ему свою работу «с целью вступить в соперничество и показать, что он в этом знает больше, чем я». Чтобы сразить «соперника», Декарт стал несправедливо критиковать метод Ферма в шутливо-высокомерном тоне. Так через посредничество Мерсенна началось то, что Ферма называл «своей малой войной с Декартом», а последний — «малым процессом математики против г. Ферма». Подлили масла в огонь и обострили полемику Роберваль с Этьеном Паскалем, которые выступили защитниками автора «О наибольших и наименьших величинах», в то время как Мидорж и Арди поддерживали Декарта. Полемика эта, несмотря на порою невыдержанный характер, имела большое научное значение для разработки дифференциального исчисления, способствовала уточнению и углублению основных понятий анализа.
Юный Блез с жадностью вникает в перипетии дискуссий в научной среде, которая естественно развивает его природные дарования, умножает эффект педагогических усилий отца. Стараясь не пропускать ни одного заседания ученых мужей и внимательно прислушиваясь к их беседам, подросток легко и быстро овладевает секретами математического мастерства. Через некоторое время он уже не только слушает, но и активно участвует в обсуждениях. Причем, как отмечает Жильберта, отличаясь проницательным умом, Блез умеет находить тонкие ошибки в доказательствах, которые не замечают многоопытные мужи, поэтому его мнение всегда очень высоко ценится. Больше того: Блез не только обсуждает чужие труды, но и начинает приносить на научные собрания свои собственные сочинения.
6
Блезу исполняется всего шестнадцать лет, когда он пишет и затем публикует свое исследование «Опыт о конических сечениях», вызвавшее большой резонанс в кружке Мерсенна и снискавшее одобрение многих маститых математиков, познакомившихся с этой работой.
Конические сечения, которым посвящен «Опыт...», — хорошо известные в древности эллипс, парабола и гипербола. С помощью этих кривых решались задачи на построение (например, удвоение куба), которые не удавалось выполнить с применением простейших чертежных инструментов — циркуля и линейки. В дошедших до нас исследованиях древнегреческие математики получали эллипс, параболу и гиперболу при сечении плоскостями одного и того же конуса: если секущая плоскость составляет с образующей угол больше угла при вершине осевого сечения, то получится эллипс, если этот угол меньше — гипербола, если углы равны — парабола. Наиболее полным и обобщающим сочинением, посвященным этим кривым, были «Конические сечения» Аполлония Пергского, жившего во втором веке до новой эры. В своем труде, составленном из восьми книг, Аполлоний рассматривал в отдельности эллипс, гиперболу и параболу, доказывая их определяющие свойства, которые зачастую оказывались сходными: несмотря на различную форму, эти три вида конических сечений тесно связаны друг с другом, и большинство теорий, касающихся эллипса, с теми или иными изменениями применимы к гиперболе и параболе. Но древнегреческий математик не располагал единым методом исследования, не опирался на всеобъемлющие формулы и уравнения, и поэтому его теория была направлена больше на особенности отдельных кривых, чем на их общие свойства. Такая направленность соответствовала духу античной науки, которая в явлениях окружающего мира видела скорее качественные и разнородные сущности, нежели количественные закономерности, а каждую конкретную задачу стремилась рассматривать в отдельности, саму по себе, применяя в каждом случае соответствующие этой задаче методы.