Но Паскаль, пишет Умберт, не удовлетворяется простым интуитивным решением: «Он доказывает строгими методами, что сумма площадей этих маленьких треугольников совсем не влияет на общий результат и ею можно пренебречь, ибо она бесконечно мала по сравнению с суммой площадей прямоугольников. Следовательно, для определения искомой поверхности следует подсчитать сумму площадей этих прямоугольников. Каждая из них в отдельности является бесконечно малой величиной (так как основание каждого прямоугольника бесконечно мало), но число прямоугольников бесконечно велико. Таким образом, речь идет о подсчете сумм бесконечно большого количества бесконечно малых величин, то есть о том, что современные математики называют интегрированием. Интегральное исчисление, по крайней мере в своем начале, было искусством подсчета этих сумм и вычисления с их помощью площадей и объемов».
В работах, связанных с циклоидой, Паскаль сделал шаг вперед по сравнению со своими предшественниками на пути дальнейшего совершенствования и обобщения методов интегрирования. Он преобразовал понятие совокупности Кавальери в понятие суммы. При этом, как пишет известный немецкий историк математики Вилейтнер, Паскаль проводил отчетливое различие между неделимыми и элементарными частями и «существенно более общим образом толковал понятие равенства фигур, чем это позволяло употребительное до того определение Евклида. Именно он считал равными две фигуры, если различие между ними меньше любой данной величины. Паскаль с полной ясностью проник в существо интеграционного процесса, заметив, что всякое интегрирование приводится к определению некоторых арифметических сумм. Паскаль подошел к определению интеграла ближе всех своих современников».
Применяя метод неделимых к различным величинам, преобразуя одни виды суммирования в другие, Паскаль в геометрической форме получил фундаментальные результаты, относящиеся к так называемым криволинейным в двойным интегралам, с помощью наглядных конкретных примеров и ясных доказательств, искусного использования приемов современной ему и античной математики упорядочил многие интеграционные проблемы, освободив их от нечетких и приблизительных решений. До прямого открытия интегрального исчисления Паскалю оставалось сделать лишь шаг — определить формальные операции интегрирования и дать его особый вычислительный алгоритм. Но Паскаль этого шага не сделал. Как и прежде, помешали его «геометризм» и антиалгебраическая настроенность, использование прямых конкретных методов. Поэтому славу первооткрывателей интегрального и дифференциального исчисления делят между собой Ньютон и Лейбниц, хотя некоторые исследователи и причисляют Паскаля к ним, исходя из возможности легкого перевода исключительно геометрических рассуждений Блеза на абстрактный язык анализа бесконечно малых.
О возможности такого перевода и извлечения алгоритма из математических трудов Паскаля свидетельствует и признание Лейбница, которое относится к «Трактату о синусах четверти круга» Блеза, связанному с исследованием циклоиды. В 1673 году по совету Гюйгенса немецкий философ познакомился с этим трактатом и, как он сам замечает, был внезапно озарен новым светом. Особое внимание Лейбница привлек чертеж с бесконечно малым треугольником, используемым Блезом для преобразования интегральных сумм. Лейбниц назвал этот треугольник характеристическим, увидев в нем один из основных элементов дифференциального исчисления, и с его помощью подошел к формулировке самих принципов этого исчисления.
Пусть нам дана, пишет Паскаль в лемме «Трактата...», четверть круга ABC (см. рис. 5),
где радиус AB рассматривается как ось, а радиус АС — как основание. Возьмем на дуге окружности произвольную точку Д, из которой на основание проводится линия синуса ДI и радиус АД и через которую проходит также касательная ЕЕ'. Из точек E и E' на основание АС опускаются перпендикуляры ER и E'R'. Затем Паскаль строит треугольник ЕКЕ' (данный треугольник Лейбниц и назвал характеристическим), который подобен треугольнику ДIА. Это подобие дает ему пропорцию:
AD/DI= EE1/ЕК,
в которой отношение бесконечно малых величин (EE1/EK) выражено отношением конечных величин AD/DI, и равенство:
ДIxЕЕ' = АДxЕК, илиДIxЕЕ' = АДxRR'.
Если же разделить какую-либо дугу четверти круга на малые части и заменить отрезки касательных эквивалентными им при переходе к пределу малыми дугами, то при интегрировании обеих частей этого равенства получается теорема, которая в «Трактате...» Паскаля звучит так: «Сумма синусов какой-либо дуги четверти круга равна отрезку основания между крайними синусами, умноженному на радиус».