Оно открыло целую эпоху в развитии естествознания и стало применяться не только во всех математических дисциплинах, но и повлияло на создание ряда новых разделов математики. Благодаря дифференциальному и интегральному исчислению математика стала гораздо шире проникать в область естественных наук и техники. Таким образом, в истории науки XVII века открытие этого исчисления было важнейшим событием, которое возникло как раз на основе методов исчисления бесконечно малых.
2
Своеобразие и эволюцию новых методов можно проследить, например, по исследованиям Кеплера и Кавальери. Так, Кеплер при определении целесообразной формы... винных бочек, когда при наименьшей затрате материала требуется получить наибольшую вместимость, разбивал идеальную поверхность изучаемого тела на элементарные части, суммировал их и тем самым непосредственно вводил бесконечно малые величины. Он применял способы исчисления бесконечно малых и в астрономических исследованиях.
Если использование этих способов у Кеплера ограничено конкретными задачами, возникавшими в ходе его научной деятельности, то в поисках более общих и систематизированных принципов образования и измерения поверхностей и тел Кавальери ввел и исследовал абстрактное понятие «неделимых». (Подобно Кавальери и независимо от него стал применять неделимые и Роберваль.) Неделимые у Кавальери — это элементы, из которых состоит площадь или объем того или иного геометрического объекта и размерность которых на единицу меньше размерности рассматриваемого объекта. Так, точка является неделимым для линии, прямая — для плоскости и т. д. При этом, например, площадь какой-то плоской фигуры определялась через уже известную площадь другой фигуры в результате сравнения отрезков прямых линий (неделимых), которыми эти фигуры покрывались.
Торричелли, отмечая особое воздействие метода неделимых на развитие математики, писал: «Несомненно, что геометрия Кавальери есть удивительное по своей экономии средство для нахождения теорем и дает возможность разрешить огромное число, казалось бы, неразрешимых теорем краткими, прямыми, наглядными доказательствами, что невозможно сделать по методу древних. Это — истинно царская дорога среди зарослей математического терновника... Метод Кавальери является действительно научным способом доказательства, всегда идущим путем прямым и свойственным самой природе. Жаль мне древней геометрии, что она либо не знала, либо не хотела признавать учения о неделимых...»
Однако, по замечанию советского историка математики Л. С. Фреймана, метод Кавальери страдал существенными логическими противоречиями: «Одним из таких противоречий является то, что неделимое (линия) имеет на одно измерение меньше числа измерений у площади, а совокупность неделимых уже имеет столько же измерений, сколько площадь!» Действительно, при наложении, скажем, друг на друга плоскостей, толщина которых равна нулю, нельзя получить какой-то объем определенной толщины — суммирование нулей дает в итоге нулевой результат.
В своих исследованиях Паскаль преодолел подобные противоречия: он рассматривал неделимые как однородные с измеряемым объектом бесконечно малые величины, из которых и составлялись интегральные суммы. Для демонстрации приемов Паскаля приведем простой пример, упоминаемый французским исследователем его научного творчества Умбертом. Предположим, что необходимо определить площадь криволинейной трапеции АВСД, составленной прямой AB, перпендикулярами к ней АС и ВД и кривой линией СД (см. рис. 4).
На оси AB берется ряд близко расположенных друг к другу точек A1, A2, A3..., из которых проводятся перпендикуляры к AB до пересечения с СД в точках C1, С2, С3... Из этих точек проводятся отрезки CC'1, С1С'2, С2С'3..., параллельные AB. Если подсчитать и просуммировать площади прямоугольников ACC'1A1, A1C1C'2A2, А2С2С'3А3..., то получится приближенное значение искомой площади, отличающееся от нее на сумму площадей криволинейных треугольников CC1C'1, С1С2С'2, С2С3С'3... (заштрихованных на чертеже). Если же предположить, что точки разделения A1, A2, A3... на AB будут бесконечно увеличиваться в количестве и, следовательно, все более сближаться друг с другом, то получаемые бесконечно узкие прямоугольники и будут неделимыми Паскаля (маленькие заштрихованные треугольники в данном случае уменьшаются и как бы стремятся «раствориться» в кривой СД).