1 — население мира от -2000 г. до нашего времени; 2 — взрывной режим, ведущий к обострению процесса роста численности населении мира; 3 — демографический переход; 4 — стабилизация населения; 5 — Древний мир; 6 — Средние века; 7 — Новая и 8 — Новейшая история, ↑ — пандемия чумы 1348 г., ↑↓ — разброс данных; о — N (1995) = 5,7 млрд; N∞ = 11,4 млрд. Если представить всю длительность развития человечества во временном масштабе данного графика от времени антропогенеза, то 5 млн лет назад находится в 100 м влево. Это указывает на то, как неравномерно течение исторического времени, вследствие чего длительность эпох сокращается по мере приближения к моменту демографического перехода и стабилизации населения мира.
Для этого посмотрим, как за последние 4000 лет росла численность человечества (см. рис. 2). Эту картину развития человечества мы представим на полулогарифмической сетке, где течение времени T показано на линейной шкале, а рост населения мира N — на логарифмической шкале, поскольку население за 4000 лет возросло в 100 раз. На графике видно, как вблизи 2000 г. население мира внезапно устремляется в бесконечность демографического взрыва, который так озадачил демографов.
Рис. 3. Линейный рост — А, экспоненциальный рост — В и гиперболический рост — С
Поэтому для описания роста человечества рассмотрим три основных траектории развития (см. рис. 3). Первым показан линейный рост А, где численность населения N растет пропорционально времени Т и скорость роста постоянна. График линейного роста лучше всего отображать на линейной сетке для времени и численности населения. При экспоненциальном росте В скорость уже пропорциональна самой численности населения и в этом случае появляется характерное для роста время. В математике обычно принято обращаться ко времени Te для экспоненциального роста системы в е раз, где е = 2,72 — основание натуральных логарифмов. Часто прибегают к более наглядному времени удвоения Т2 = 0,7 Те, которое на 30% меньше Т. На полулогарифмической сетке экспоненциальный рост отображается прямой, на которой время представлено на линейной, а население — на. логарифмической шкале. Если бы население мира росло экспоненциально, то на рис. 2 такой рост отображался бы прямой, чего заведомо нет ни на одном этапе роста.
Рост человечества происходит совершенно иначе. Мы видим, как медленный в начале рост все ускоряется и по мере приближения к третьему тысячелетию устремляется в бесконечность демографического взрыва, и это происходит в конечное время около 2000 г. Такой процесс отражает гиперболический график роста С. Эта закономерность, для которой также нет характерного времени роста, представляет для нас основной интерес, поскольку данные для населения мира за миллион лет с удивительной точностью описываются формулой:
где С = 200 млрд — постоянная с размерностью [человек × годы], а время выражено в годах. Следует отметить, что указанный закон роста очевидным образом возникает при первых попытках описать данные по росту человечества. Поэтому неудивительно, что к нему приходили в разное время разные исследователи. Одним из первых был Маккендрик, на что автору указал Натан Кейфиц. Затем к этому выражению в 1960 г. обратились американский инженер Форстер и немецкий физик Хорнер. Последний рассматривал возможность справиться со взрывным уходом численности населения на бесконечность путем распространения человечества на другие планеты Солнечной системы.
С Хорнером я впервые встретился на Международном конгрессе по астронавтике в Дрездене, где я выступал с пленарным докладом по глобальным проблемам, и он рассказал о своих идеях. Это заседание особенно запомнилось, так как оно проходило в дни объединения двух Германий в октябре 1991 г.
Заметим также, что к указанной закономерности обратился советский астрофизик И. С. Шкловский в 6-м посмертном издании замечательной книги «Вселенная, жизнь, разум» [13]. На основании этой модели он пришел к выводу, что рост определяется и ограничивается социальными и ресурсными, а не биологическими факторами. Эти работы показывают всю широту и сложность проблем, которые следуют из модели неограниченного роста.
Однако в демографии выражение (1), характеризующее гиперболический рост населения мира, никогда всерьез не рассматривалось по трем причинам.