В результате на основании (3) максимальная абсолютная скорость глобального роста во время демографического перехода равна:
при относительном росте:
достигнутом в 1995 г., что согласуется с данными ООН, но дает несколько меньшее значение для абсолютной скорости роста при сравнении с табл. 1 (см. рис. 18).
Население нашей планеты в этот критический момент перехода Т1 равно:
N1 = К2/2 = 5680 млн. (9)
На основе этих выражений легко определить предел N∞, в два раза больший, чем N1 к которому в эпоху С асимптотически стремится население Земли:
N∞ = 2N1 = πK2 = 11 360 млн. (10)
В рамках сделанных предположений это число представляет верхнюю оценку населения Земли в предвидимом будущем. Таким образом, глобальное взаимодействие приводит к ускорению и синхронизации процессов и на заключительной стадии демографического перехода — к сужению перехода и тем самым к снижению предела для населения Земли. Этот вывод находится в согласии с эмпирическими наблюдениями демографов. Рассмотрение N (Т) как аналитической функции указывает на асимптотическое поведение при T → ∞, когда N → N∞, в предположении об отсутствии особенностей — полюсов или нулей — в обозримом будущем.
Начальный линейный рост дает оценку времени для эпохи антропогенеза — критической сингулярности в начале предыстории человечества, которая случилась:
T0 - T1 = π/2·Kτ = — τ√πN1/2 = 4,2 млн лет назад, (11)
если использовать известное значение N1 и одно и то же значение τ = 45 лет для сингулярности в далеком прошлом и в настоящем. Несмотря на сделанные упрощения, данная оценка вполне согласуется с оценками времени Т0 в антропологии.
Интересно определить полное число людей, живших на Земле. Если переставить переменные в (6) и проинтегрировать:
то получим число людей, живших от Т0 до нашего времени Т1 В оценках других авторов длительность поколения принята равной 20 годам, что ведет к оценке Р0,1 = 106 млрд [10]. Поэтому необходимо введение в (12) множителя 45/20 = 2,25:
Р0,1 = 2,25 К2 ln К = 90 млрд. (13)
Таким образом, в течение каждого из ln К = 11,0 выделенных периодов жило по 2,25 K2 = 8 млрд людей. Это число является инвариантным для числа людей, живших в экспоненциально сокращающихся циклах, а ln K указывает на число циклов.
Циклы можно получить, обобщая решение (6) в область комплексных переменных или же просуммировав экспоненциально сокращающиеся циклы:
ΔT = К τ ехр (-θ), (14)
где θ = |ln t| — номер цикла, определить длительность развития при К >> 1:
и сравнить ее с (11), где длительность равна Т1 - Т0 = π/2·Kτ = 1,571. В первом случае рост суммируется по гиперболической траектории, во втором — по (4) — N = K tan t/K.
Демографические циклы определяют периодичность развития всего человечества за 4–5 млн лет, включая проходящий по гиперболическому закону рост от конца антропогенеза до наших дней.
Для дальнейшего обзора результатов перейдем к переменной n = N/K:
когда мерой численности становится К. Тогда уравнения для роста приобретают симметричный вид и видно сопряжение переменных n и t. Смена зависимой переменной в (16а) и (16d) видна при прохождении перехода, когда n становится независимой переменной вместо времени t, что выражено в уравнении роста (3).
Рост населения можно иллюстрировать геометрическим построением функции тангенса:
где угол Δφ = τ отображает течение времени, а приращение населения ΔN = 1 (рис. 16).
Линейный рост будет продолжаться до φA,B = Кτ = 1 и NB = tan 1 в точке В на касательной АС. Дальнейший рост N = К(π/2 — φ)-1 будет проходить по гиперболе, при которой время асимптотически стремится к π/2, а население достигнет значения Nc = К2. Когда система приближается к моменту особенности, то от уравнения (16а) следует переходить к уравнению (16d), чтобы описать рост при прохождении особенности в течение эпохи С. Построение показывает, что после перехода от линейного к гиперболическому росту на эпоху В остается в два раза меньше времени, чем на начальную эпоху А. Вывод этого соотношения для всей эпохи В (см. рис. 19) построен при К = 7, когда время от Т0 до Т1 разделено на 11 интервалов, и поскольку к/2 = 1/7, то Nc = К2 =49. Однако даже при таком малом значения К, когда In K = In 1,95 дает хорошую оценку для числа демографических циклов, 1 + In К ≈ 3. Таким образом нулевой цикл антропогенеза продолжался 7 единиц времени, первый цикл длился 3 и последний — одну единицу времени. Это построение показывает, как дискретность времени и населения приводит к появлению периодичности роста, выраженной в демографических циклах как главных эпохах развития человечества.
Рис. 19. Построение функции тангенса, показывающее пределы асимптотик роста