Простой пример объяснит эту значимую, полезную, практичную идею как нельзя лучше. Горячий газ, заполняющий воздушный шар, состоит из огромного количества атомов. Если бы мы хотели предсказать поведение газа, применяя ко всем этим атомам законы механики, то столкнулись бы с двумя большими проблемами.
• Даже если бы мы ограничились рамками классической механики, нам нужно было бы знать положение и скорость каждого атома в начальный момент времени. Сбор и хранение такого количества данных совершенно непрактичны. Использование квантовой механики только усугубило бы проблему.
• Даже если бы мы получили и сохранили данные, еще непрактичнее было бы при помощи вычислений отслеживать изменения в движениях частиц.
Несмотря на это, опытные экипажи уверенно управляют воздушными шарами. В некоторых отношениях поведение воздуха легко предсказуемо.
Используя совершенно другие концепции, мы можем найти простые законы, описывающие поведение воздуха в макромасштабах, — в терминах плотности, давления и температуры. Именно эти параметры помогают ответить на вопросы, возникающие у пилотов аэростатов. Да, описание на уровне атомов гораздо информативнее, но б
Рассмотрим, например, положение и скорость любого конкретного атома, которые в результате его движения быстро меняются. Фактическая траектория атома сильно зависит от точных начальных значений, а также от того, что делают другие атомы. Таким образом, информацию о положении и скорости конкретной частицы чрезвычайно сложно вычислить и она быстро устаревает. Плотность, давление и температура в этом отношении намного полезнее. Открытие и количественное определение этих простых, стабильных свойств, дающих ответы на важные вопросы, стало крупным научным достижением.
Большая часть деятельности ученых сводится к поиску как раз таких свойств. Иногда мы называем их эмерджентными[139]. (Мы уже сталкивались с этой концепцией ранее, в главе 7, но под несколько другим углом.)
Найти полезные эмерджентные свойства и научиться их использовать — большая удача. За свою историю естественные науки обогатились множеством важных эмерджентных свойств (энтропия, химическая связь, жесткость и так далее), и на их основе удалось построить множество полезных моделей.
Подобные вопросы возникают и за пределами естественных наук. К примеру, нам хотелось бы составить более адекватное представление о поведении людей или о фондовом рынке. Анализ этих явлений на «атомарном» уровне, основанный на изучении поведения отдельных нейронов или отдельных инвесторов, не говоря уже о поведении кварков, глюонов, электронов и фотонов, которые их образуют, невероятно сложен. И если ваша цель — наладить отношения с людьми или заработать денег путем инвестирования, такой подход бессмыслен.
Вместо этого для ответов на наши масштабные вопросы мы обращаемся к различным концепциям из книг по психологии и экономике. Они предлагают нам модели людей и рынков, дополняющие «атомарные». В области психологии и экономики у нас пока не слишком много моделей, работающих так же надежно, как модели газов, созданные физиками. Но поиск продолжается.
Описание действительности в терминах ее самых элементарных строительных блоков — огромное удовольствие. Заманчиво было бы думать, что этот способ идеален, в то время как другие описания высокого уровня — лишь приближенные компромиссы, которые отражают слабость понимания. Такое отношение делает совершенное врагом хорошего. На первый взгляд оно выглядит глубоким, но на самом деле поверхностно.
Чтобы ответить на интересующие нас вопросы, часто нужно изменить точку зрения. Открытие новых концепций и изобретение способов работы с ними — нескончаемая творческая деятельность. Специалисты в области информатики и инженеры-программисты хорошо понимают, что при написании полезных алгоритмов важен способ представления данных. Он отличает полезную информацию от той, которая «в принципе» существует, но в реальности недоступна, поскольку на ее поиск и обработку уйдет слишком много времени и усилий. Это похоже на различие между обладанием золотыми слитками и знанием факта, что в океанской воде в принципе растворено огромное количество атомов золота.
По этой причине полное понимание фундаментальных законов, если бы мы когда-либо его достигли, не было бы ни «Теорией всего», ни «Концом науки»[140]. Нам по-прежнему будут нужны взаимодополняющие описания реальности. На многие серьезные вопросы ответов еще нет, впереди немало масштабной научной работы.
И так будет всегда.
Примеры в искусстве