Это поведение, сопровождающееся уничтожением процесса, отличается от поведения более старых версий Linux и множества других вариантов UNIX, в которых просто аварийно завершалась функция malloc
. Называется оно уничтожением из-за нехватки памяти (out of memory (OOM) killer), и хотя может показаться чересчур радикальным, на самом деле служит разумным компромиссом между возможностью быстрого и эффективного выделения памяти процессам и необходимостью собственной защиты ядра от полного исчерпания ресурсов, что является серьезной проблемой.
Но что это означает для прикладного программиста? В основном благую весть. Система Linux очень умело управляет памятью и позволяет приложениям использовать большие области памяти и даже очень большие единые блоки памяти. Но вы должны помнить о том, что выделение двух блоков памяти в результате не приведет к формированию одного непрерывно адресуемого блока памяти. Вы получите то, что просили: два отдельных блока памяти.
Означает ли этот, по-видимому, неограниченный источник памяти с последующим прерыванием и уничтожением процесса, что в проверке результата, возвращаемого функцией malloc
, нет смысла? Конечно же нет. Одна из самых распространенных проблем в программах на языке С, использующих динамическую память, — запись за пределами выделенного блока. Когда это происходит, программа может не завершиться немедленно, но вы, вероятно, перезапишите некоторые внутренние данные, используемые подпрограммами библиотеки malloc.
Обычный результат — аварийное завершение последующих вызовов malloc
не из- за нехватки памяти, а из-за повреждения структур памяти. Такие проблемы бывает трудно отследить, и чем быстрее в программах обнаружится ошибка, тем больше шансов найти причину. В
Неправильное обращение к памяти
Предположим, что вы хотите сделать что-то "плохое" с памятью. В упражнении 7.4 в программе memory4.c вы выделяете некоторую область памяти, а затем пытаетесь записать данные за пределами выделенной области.
#include
#define ONE_K (1024)
int main {
char *some_memory;
char *scan_ptr;
some_memory = (char *)malloc(ONE_K);
if (some_memory == NULL) exit(EXIT_FAILURE);
scan_ptr = some_memory;
while (1) {
*scan_ptr = '\0';
scan_ptr++;
}
exit(EXIT_SUCCESS);
}
Вывод прост:
$ ./memory4
Segmentation fault
Как это работает
Система управления памятью в ОС Linux защищает остальную систему от подобного некорректного использования памяти. Для того чтобы быть уверенной в том, что одна плохо ведущая себя программа (как эта) не сможет повредить любые другие программы, система Linux прекратила ее выполнение.
Каждая выполняющаяся в системе Linux программа видит собственную карту распределения памяти, которая отличается от карты распределения памяти любой другой программы. Только операционная система знает, как организована физическая память и не только управляет ею в интересах пользовательских программ, но также защищает их друг от друга.
Указатель
Современные системы Linux, в отличие от ОС MS-DOS, но подобно новейшим вариантам ОС Windows, надежно защищены от записи или чтения по адресу, на который ссылается пустой указатель (null
), хотя реальное поведение системы зависит от конкретной реализации.
Выполните упражнение 7.5.
null
Давайте выясним, что произойдет, когда мы попытаемся обратиться к памяти по пустому или null-указателю в программе memory5a.c.
#include
#include
#include
int main {
char *some_memory = (char*)0;
printf("A read from null %s\n", some_memory);
sprintf(some_memory, "A write to null\n");
exit(EXIT_SUCCESS);
}
Будет получен следующий вывод:
$ ./memory5a
A read from null (null)
Segmentation fault
Как это работает