Случайная выборочная траектория, также называемая случайным пробегом, является математическим названием для последовательности виртуальных исторических событий, начинающихся с данного момента и заканчивающихся в другой, и появление которых соответствует некоторому уровню неуверенности. Однако, слово случайный не должно путать с равновероятным (то есть имеющим одинаковую вероятность), поскольку некоторые результаты дадут более высокую вероятность, чем другие. Примером случайной выборочной траектории может быть температура тела вашего кузена в течение периода его болезни тифозной лихорадкой, измеряемой ежечасно. Также это может быть моделирование цены вашей любимой акции, измеренной ежедневно, на закрытии рынка, в течение, скажем, одного года. Начиная со 100$, в одном сценарии цена может заканчиваться 20$, достигнув, однако, максимума в220$, а в другом - она может заканчиваться в точке 145$, повидав минимум в 10$. Другой пример - эволюция вашего состояния в течение вечера в казино. Вы начинаете с 1000$ в кармане и делаете измерения каждые 15 минут. В одной выборочной траектории вы, в полночь, имеете 2200$, а в другой - вы едва наскребаете 20$ на такси.
Стохастические процессы относятся к динамике событий, разворачивающихся во времени. Стохастический -причудливое греческое название для случайного. Эта отрасль теории вероятности интересуется изучением развития последовательных случайных событий - можно даже называть это математикой истории. Ключ к процессу в том, что он заключает в себе время.
Что такое генератор Монте-Карло? Вообразите, что вы можете смоделировать совершенное колесо рулетки на вашем чердаке без того, чтобы обращаться за помощью к плотнику. Компьютерные программы могут моделировать что угодно. Они даже лучше (и дешевле), чем колесо рулетки, сделанное плотником, которое может "любить" какой-либо номер больше, чем другие, вследствие возможной неровности в своей конструкции или пола вашего чердака. Такая неровность называется уклоном.
Моделирование методом Монте-Карло больше всего похоже на игрушку. Можно производить тысячи, возможно, миллионы случайных выборочных траекторий, и смотреть на превалирующие характеристики их некоторых особенностей. Компьютер -незаменимый инструмент в таких занятиях. Очаровательная ссылка на Монте-Карло подчеркивает метафору моделирования случайных событий в манере виртуального казино. Один набор условий, которые, как считается, преобладают в действительности, запускает коллекцию моделей возможных событий. Даже не имея математической подготовки, мы можем применить моделирование методом Монте-Карло для 18-летнего христианского ливанца, последовательно играющего в Русскую рулетку на данную сумму, и видеть, сколько из этих попыток кончаются обогащением, или сколько времени требуется, в среднем, для того чтобы увидеть его некролог. Мы можем заменить барабан револьвера, чтобы он содержал 500 пулеприемников вместо шести, что, очевидно, уменьшило бы вероятность смерти, и посмотреть результаты.
Методы моделирования Монте-Карло стали впервые применяться в военной физике в лаборатории Лос-Аламоса во время подготовки бомбы. Они стали популярными в финансовой математике в 1980-ых, особенно в теориях случайных блужданий цены актива. Ясно, что для примера русской рулетки не требуется такого мощного аппарата, но многие проблемы, особенно ситуации сходства с реальной жизнью, нуждаются с силе генератора Монте-Карло.
Математика Монте-Карло
Это - факт, что "истинные" математики не любят методы Монте-Карло. Они полагают, что такие методы крадут у нас изящество и элегантность математики. Они называют это "животной силой", поскольку мы можем заменить большую часть математических знаний симулятором Монте-Карло (и другими вычислительными уловками). Например, без формального знания геометрии можно вычислять таинственное, почти мистическое число ?1. Как? Просто вписав круг внутрь квадрата и "стреляя" случайными пулями в получившуюся картину. При этом надо предположить равные вероятности для попадания в любую точку картины (что называется равномерным распределением). Отношение пуль внутри круга к количеству пуль внутри и вне круга, даст значение мистического р!, с почти бесконечной точностью. Ясно, что это - не эффективное использование компьютера, поскольку р! может быть вычислено аналитически, то есть в математической форме, но метод может давать некоторым пользователям большее понимание предмета, чем строки уравнений. Умственные способности и интуиция некоторых людей ориентированы таким способом, что они более восприимчивы к получению знаний именно в такой манере (я считаю себя одним из них). Компьютер возможно, не естественен для нашего человеческого мозга, как, впрочем, и математика.