(Стереотип чистого математика представляет анемичного человека с косматой бородой, грязными и не стриженными ногтями, тихо трудящегося за спартанским и беспорядочным столом. С узкими плечами и выпирающим животиком, он сидит в неряшливом офисе, полностью поглощенный своей работой, не обращающий внимания на окружающую его среду. Он вырос при коммунистическом режиме и говорит по-английски со строгим и хриплым восточноевропейским акцентом. Когда он ест, крошки еды застревают в его бороде. Со временем его все больше поглощает предмет его чистых теорем, достигающий новых уровней всё увеличивающейся абстракции. Американская публика познакомилась недавно с одним из таких характеров - Унабомбером, бородатым математиком-отшельником, который жил в хижине и взялся за убийства людей, продвигавших современные технологии. Ни один журналист не был способен даже приблизительно описать предмет его диссертации - комплексные границы, поскольку это не имеет никакого понятного эквивалента - комплексное число, является полностью абстрактным и воображаемым числом, квадратный корень из минус единицы, объект, который не имеет аналогов вне мира математики.
Название Монте-Карло вызывает в памяти образ загорелого учтивого человека, этакого европлэйбоя, входящего в казино с дуновением средиземноморского бриза. Он - способный лыжник и теннисист, но также не посрамит себя в шахматах и бридже. Он управляет серым спортивным автомобилем, одет в хорошо выглаженный итальянский костюм ручной работы и гладко говорит о мирском и реальном, то есть о том, что журналист может легко описывать публике в сжатом изложении. В казино он проницательно считает карты, определяя шансы и держит пари в заученной манере, пока его мозг производит точные вычисления оптимального размера ставки. Он мог бы быть более умным потерянным братом Джеймса Бонда.
Теперь, когда я думаю о "математике Монте-Карло", я думаю о счастливой комбинации двух факторов: реализма человека Монте-Карло без мелочности, объединенного с интуицией математика без чрезмерной абстракции. На самом деле, эта отрасль математики имеет огромное практическое использование и не столь суховата, как это обычно думается. Я увлекся ею в ту минуту, когда стал трейдером. И она формировала мое мышление в большинстве вопросов, связанных со случайностью. Большинство примеров, используемых в книге, было создано с помощью моего генератора Монте-Карло, который я представляю в этой главе. Но в гораздо большей степени это скорее способ мышления, чем вычислительный метод. Математика - это, в принципе, инструмент больше для мышления, чем для вычисления.
Инструменты
Понятие альтернативных историй, обсуждаемых в предыдущей главе, может быть значительно расширено и подвергнуто различной технической обработке. Что приводит нас к инструментам, используемым в моей профессии, чтобы играть с вероятностью. Позже я их обозначу. Методы Монте-Карло, коротко говоря, состоят в создании искусственной истории, используя следующие концепции.
Во-первых, это траектория выборки. Невидимые истории имеют научное название — альтернативные выборочные траектории, которое заимствовано из области вероятностной математики, называемой стохастическим процессом. Понятие траектории, в противоположность результату, указывает на то, что это не простой анализ сценария в стиле МВА, но экспертиза последовательности сценариев в течение времени. Мы не просто интересуемся тем местом, где птичка может оказаться завтра ночью, но интересуемся всеми различными местами, которые она может посетить в течение интервала времени. Мы не просто интересуемся тем, сколько будет стоить капитал инвестора, скажем, через год, а скорее количеством сердечных приступов, которые он может испытывать в течение этого периода. Слово выборочная подчеркивает, что мы видим только одну реализацию среди множества возможных. Очевидно, что выборочная траектория может быть либо детерминированной, либо случайной.