Исходя из представления о наличии у электрона волновых свойств. Шредингер* в 1925 г. предположил, что состояние движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в это уравнение вместо длины волны ее значение из уравнения де Бройля (λ = h / mv), он получил новое уравнение, связывающее энергию электрона с пространственными координатами и так называемой волновой функцией ψ, соответствующей в этом уравнении амплитуде трехмерного волнового процесса**.
Особенно важное значение для характеристики состояния электрона имеет волновая функция ψ. Подобно амплитуде любого волнового процесса, она может принимать как положительные, так и отрицательные значения. Однако величина ψ2 всегда положительна. При этом она обладает замечательным свойством: чем больше значение ψ2 в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т.е. что его существование будет обнаружено в каком-либо физическом процессе.
Более точным будет следующее утверждение:
* Эрвин Шредингер (1887-1961) — австрийский физик, один из основоположников квантовой механики. В 1933 г. награжден Нобелевской премией, с 1934 — иностранный член Академии наук СССР.
** Мы не приводим уравнения Шредингера ввиду его математической сложности. Это уравнение и способы его решения рассматриваются в курсах физики и физической химии.
*** Уяснению понятия «плотность вероятности» может помочь следующая аналогия: вероятность связана с плотностью вероятности ψ2 так же, как масса тела m, занимающего объем ΔV, связана с плотностью тела ρ (m = ρΔV ).
- 70 -
Рис 5. Электронное облако атома водорода.
Для уяснения физического смысла квадрата волновой функции рассмотрим рис. 5, на котором изображен некоторый объем вблизи ядра атома водорода. Плотность размещения точек на рис. 5 пропорциональна значению ψ2 в соответствующем месте: чем больше величина ψ2 , тем гуще расположены точки. Если бы электрон обладал свойствами материальной точки, то рис. 5 можно было бы получить, многократно наблюдая атом водорода и каждый раз отмечая местонахождение электрона: плотность размещения точек на рисунке была бы тем больше, чем чаще обнаруживается электрон в соответствующей области пространства или, иначе говоря, чем больше вероятность обнаружения его в этой области.
Мы знаем, однако, что представление об электроне как о материальной точке не соответствует его истинной физической природе. Поэтому рис. 5 правильнее рассматривать как схематическое изображение электрона, «размазанного» по всему объему атома в виде так называемого электронного облака: чем плотнее расположены точки в том или ином месте, тем больше здесь плотность электронного облака. Иначе говоря,
Представление о состоянии электрона как о некотором облаке электрического заряда оказывается очень удобным, хорошо передает основные особенности поведения электрона в атомах и молекулах и будет часто использоваться в последующем изложении. При этом, однако, следует иметь в виду, что электронное облако не имеет определенных, резко очерченных границ: даже на большой расстоянии от ядра существует некоторая, хотя и очень малая, вероятность обнаружения электрона. Поэтому под электронным облаком условно будем понимать область пространства вблизи ядра атома, в которой сосредоточена преобладающая часть (например, 90%) заряда и массы электрона. Более точное определение этой области пространства дано на стр. 75.
27. Энергетическое состояние электрона в атоме.
Для электрона, находящегося под действием сил притяжения к ядру, уравнение Шредингера имеет решения не при любых, а только при определенных значениях энергии. Таким образом, квантованность энергетических состояний электрона в атоме (т.е. первый постулат Бора) оказывается следствием присущих электрону волновых свойств и не требует введения особых постулатов.
Для лучшего понимания последнего утверждения рассмотрим упрощенную модель атома, «одномерный атом», в котором электрон может совершать лишь колебательные движения между крайними точками.
- 71 -