Из последнего утверждения следует, что волновыми свойствами, наряду со свойствами корпускулярными, должны обладать и макротела, поскольку все они построены из микрочастиц. В связи с этим может возникнуть вопрос: почему волновые свойства окружающих нас тел никак не проявляются? Это связано с тем, что движущимся телам большой массы соответствует чрезвычайно малая длина волны, так как в уравнении λ = h / mv масса тела входит в знаменатель. Даже для пылинки с массой 0,01 мг, движущейся со скоростью 1 мм/с, длина волны составляет примерно 10-21 см. Следовательно, волновые свойства такой пылинки могли бы проявиться, например, при взаимодействии с дифракционной решеткой, ширина щелей которой имеет порядок 10-21 см. Но такое расстояние значительно меньше размеров атома (10-8 см) и даже атомного ядра (10-13 - 10-12 см), так что при взаимодействии с реальными объектами волновые свойства пылинки никак не смогут проявиться. Между тем, электрону с массой 9·10-28 г, движущемуся со скоростью 1000 км/с, соответствует длина волны 7,3·10-8 см; дифракция такой волны может наблюдаться при взаимодействии электронов с атомами в кристаллах.
* Луи де Бройль (род. В 1892 г.) - французский физик, автор гипотезы о волновых свойствах материи, которая легла в основу квантовой механики. Работал также в области теории электронов, строения атомного ядра, теории распространения электромагнитных волн. В 1929 г. награжден Нобелевской премией, с 1958 г. - иностранный член Академии наук СССР.
69
Итак, электронам, как и фотонам, присуща корпускулярно-волновая двойственность. Корпускулярные свойства электрона выражаются в его способности проявлять свое действие только как целого. Волновые свойства электрона проявляются в особенностях его движения, в дифракции и интерференции электронов.
Таким образом, электрон — весьма сложное материальное образование. Еще в 1907 г., развивая положение о бесконечности процесса познания природы, В. И. Ленин писал: «Электрон, как и атом — неисчерпаем». Время подтвердило правильность этого утверждения. Человеческий разум глубоко проник во внутреннее строение атома, необычайно расширились и наши представления о природе электрона. Нет сомнения в том, что дальнейшее развитие науки вскроет еще более глубокие и сложные свойства объектов микромира.
26. Волновая функция.
Исходя из представления о наличии у электрона волновых свойств. Шредингер* в 1925 г. предположил, что состояние движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в это уравнение вместо длины волны ее значение из уравнения де Бройля (λ = h / mv), он получил новое уравнение, связывающее энергию электрона с пространственными координатами и так называемой волновой функцией ψ, соответствующей в этом уравнении амплитуде трехмерного волнового процесса**.
Особенно важное значение для характеристики состояния электрона имеет волновая функция ψ. Подобно амплитуде любого волнового процесса, она может принимать как положительные, так и отрицательные значения. Однако величина ψ2 всегда положительна. При этом она обладает замечательным свойством: чем больше значение ψ2 в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т.е. что его существование будет обнаружено в каком-либо физическом процессе.
Более точным будет следующее утверждение:
* Эрвин Шредингер (1887-1961) — австрийский физик, один из основоположников квантовой механики. В 1933 г. награжден Нобелевской премией, с 1934 — иностранный член Академии наук СССР.
** Мы не приводим уравнения Шредингера ввиду его математической сложности. Это уравнение и способы его решения рассматриваются в курсах физики и физической химии.
*** Уяснению понятия «плотность вероятности» может помочь следующая аналогия: вероятность связана с плотностью вероятности ψ2 так же, как масса тела m, занимающего объем ΔV, связана с плотностью тела ρ (m = ρΔV ).
70
Рис 5. Электронное облако атома водорода.
Для уяснения физического смысла квадрата волновой функции рассмотрим рис. 5, на котором изображен некоторый объем вблизи ядра атома водорода. Плотность размещения точек на рис. 5 пропорциональна значению ψ2 в соответствующем месте: чем больше величина ψ2 , тем гуще расположены точки. Если бы электрон обладал свойствами материальной точки, то рис. 5 можно было бы получить, многократно наблюдая атом водорода и каждый раз отмечая местонахождение электрона: плотность размещения точек на рисунке была бы тем больше, чем чаще обнаруживается электрон в соответствующей области пространства или, иначе говоря, чем больше вероятность обнаружения его в этой области.