Читаем Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта полностью

Проблема железа для CV заключается в том, что до сих пор нет процессоров, полностью соответствующих задачам моделирования. нейронных сетей. Фон-неймановские CPU были задуманы для расчетов, то есть для последовательного выполнения одной программы, хотя за десятилетия их научились искусственными приемами адаптировать к распараллеливанию, или, как сейчас чаще говорят, к работе в многопоточном режиме, более соответствующим требованиям машинного обучения. Однако CPU, имея относительно небольшое число (десятки) производительных ядер, остаются способными обрабатывать ограниченное количество мощных потоков. Ограниченность обычных CPU для задач CV и других задач, связанных с машинным обучением, была осознана давно, чтобы с ней справиться в ход идут не только графические, карты (GPU), аудиокарты, сигнальные процессоры, программируемые матрицы FPGA и многое другое. Успешнее других оказалось внедрение GPU, задуманные для задач трехмерного рендеринга они отличаются большим числом ядер, но эти ядра существенно меньше и проще, чем CPU. Так уж случилось, что GPU, рожденные для компьютерных игр, смогли обеспечить прорыв в AI. Сегодня огромные кластеры, собранные из игровых в прошлом процессоров, обеспечивают всю индустрию AI.

Но GPU являются паллиативом, если посмотреть на проблему шире, то надо признать, что аппаратные средства, поддерживающие CV, NLP и другие решения из области machine intelligence, являющейся подмножеством AI, должны быть рассчитаны на совершенно иную нагрузку, чем традиционные. Во-первых, в их основе должен быть приближенный компьютинг (approximate computing), дающий удовлетворительно точный, но не гарантированно точный результат. Именно так, неточно, работает человеческое мышление. Исследования показывают, что снижение точности на 5–10 % может понизить энергопотребление на два порядка. Во-вторых, обучение должно стать органической частью архитектуры, идея обучения на основе программируемой архитектуры похоже на своего рода оксюморон. Пока удовлетворение этих требований возможно только в идеале. Тем, кого интересует проблема соотношения аппаратного обеспечения и машинного обучения, будет интересно данное в марте 2020 интервью Яна Лекуна «На экзотическом железе трудно добиться успеха». В нем он раскрывает проблему соотношения аппаратного обеспечения и машинного обучения, делая упор на том, что неэффективно использование матричного умножения для выполнения операций свертки – основы конволюционных сетей CNN. На данный момент альтернативу GPU, поставляемых компанией Nvidia, составляют несколько процессоров. Наиболее известно среди них существующее с 2016 года семейство тензорных процессоров Google (Tensor Processing Unit, TPU), представляющих собой специализированную интегральную схему, предназначенную для поддержки библиотеки машинного обучения TensorFlow. Возможно, подходящим решением проблемы железа для CV станут графовые модели, где вершины представляют вероятностные характеристики данных, а ребра – корреляцию между этими свойствами. Этим путем идёт британская компания Graphcore, производящая процессоры Colossus MK2 IPU (Intelligence Processor Unit), название которого адресует к электронно-механическому компьютеру Colossus, испробованному во время Второй Мировой Войны в операции Ultra. Другой многообещающий стартап Cerebras (Головной мозг) выбрал для себя в качестве руководящей идею использования специализированных процессоров на разреженных матрицах. К тому же ее процессор CS-1 изготовлен по необычной технологии Wafer-Scale Engine (WSE), то есть масштабирование на всю подложку. Он занимает всю поверхность кремниевой пластины размером 215 x 215 миллиметров, состоит из более чем 1,2 триллиона транзисторов, собранных примерно в 400 000 ядер.

Особый интерес вызывает деятельность компании Tachyum, созданной выходцем из Словакии Радославом Даниляком. Здесь была разработана процессорная архитектура под названием Prodigy, что переводится как чудо или виртуоз, она представляет собой универсальный 64-ядерный процессор, объединяющий в себе качества CPU и GPU и при этом потребляющий на порядок меньше энергии. Процессор уже выпускается, на его основе в Словацком национальном суперкомпьютерном центре будет построен самый мощный в мире AI-компьютер. Этот проект должен стать центром кристаллизации общеевропейских исследований в области AI, он привлекает к себе и административные, и деловые, но, главное, академические ресурсы. Показательно, что техническим консультантом Tachyum является Стив Фарбер, один из двух разработчиков архитектуры ARM и участник проекта по созданию неизоморфного компьютера SpiNNaker, способного эмулировать мозг.

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука