Читаем Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта полностью

Средствами CV удается автоматически преобразовать фото- и видеоданные в информацию, что с успехом удалось сделать Ыну с коллегам в вышеописанном эксперименте с кошками с использованием технологий самообучения ANN. Еще в 2007 году группа авторов под руководством того же Эндрю Ына опубликовала статью «Обучение с самообучением: Трансферное обучение на неразмеченных данных» (Self-taught Learning: Transfer Learning from Unlabeled Data). В ней они рассматривают четыре типа обучения

• Supervised Classification – Обучение с учителем

• Semi-supervised Learning – Обучение с частичным участием учителя

• Transfer Learning – Трансфертное обучение

• Self-taught Learning – Обучение без учителя

Эти виды обучения отличаются по степени использования заранее помеченных данных. В случае обучения с учителем она максимальна и, напротив, в случае обучения без учителя минимальна. Идея последнего проста, можно на некотором тестовом наборе научить саму сеть самостоятельно учиться, а после этого она получит возможность накапливать внутри себя необходимый ей комплекс метаданных, чтобы решать поставленную перед ней задачу распознавания. Но в отличие от человека, использующего при обучении творческие способности, ассоциации и т. п., машина по определению тупа, поэтому процесс ее обучения требует затрат большой вычислительной мощности, к тому же эта мощность при использовании фон-неймановских CPU на задачах машинного обучения используется нерационально.

Основным инструментом для разработчиков CV служат библиотеки функций, позволяющие решать стоящие перед ними задачи с использование нейронных сетей и методы машинного обучения. Библиотеки позволяют аккумулировать опыт и небольшими силами создавать серьезные работающие системы из готовых блоков. Почти все библиотеки относятся к открытому ПО, в числе наиболее популярных: OpenCV, TensorFlow, CUDA, YOLO, MATLAB, Keras, SimpleCV, BoofCV, CAFFE, OpenVINO и DeepFace, но ими список не ограничивается, поскольку по своим возможностям они заметно различаются, выбор зависит от решаемой задачи.

В подавляющим большинстве рейтингов лидирует библиотека OpenCV, что заслуживает особого внимания. Хотя она относится к открытым продуктам и она развивается силами большого числа добровольцев, но у нее, что случается нечасто, российские корни. История OpenCV с создания сотрудниками Саровским ВНИИЭФ, работавшими по контракту с Intel, Нижегородской программной технологической лаборатории (NSTL, Nizhny Software Technology Lab). Одним из ее основателей стал Валерий Федорович Курякин, первыми разработчиками были Вадим Писаревский и Виктор Ерухимов, а американский участник проекта Гари Брадски инициировал развите в виде свободно распространяемой продукта с открытым исходным кодом. В 2000 году библиотека получила название OpenCV. Дальнейший путь развития OpenCV был непрост, однако он привел к успеху, библиотека скачана более 20 млн раз и ее элементы использовались при разработке Android и iOS.

<p>Проблема умного железа</p>

Используя метафору «души и тела» в приложении к AI, можно сказать, что в CV – это проблема «души», она решается давно и успешно, но проблема «тела» остается далека от решения, несмотря на кажущееся благополучие, обеспечиваемое графическими процессорами GPU и собранными из них кластерами с рекордными показателями производительности, измеренной в петафлопах, то есть в единицах, не имеющих непосредственного отношения к нагрузке, создаваемой AI-приложениями. История специализированных аппаратных технологий для CV и вообще задач машинного обучения только начинается.

Приходится признать, что для такого класса задач используемые ныне GPU и намного реже специализированные микросхемы (ASCI) и матричные массивы (FPGA) служат тем, что по-английски называют stopgap measures, то есть средствами, обеспечивающими временное решение, не более того. О степени несовершенства можно судить по тому, что мозг потребляет порядка 40 ватт, а если бы удалось создать компьютер, моделирующий равное число нейронов современными технологиями, его мощность оценивалась бы тысячами мегаватт, но есть на 7–9 порядков больше. Поэтому нынешнее положение можно сравнить с тем, что было в первые годы существования компьютеров, когда в ход шли любые доступные радиодетали – лампы, транзисторы, конденсаторы, сопротивления, магнитные сердечники. Это происходило до семидесятых, до тех пор пока не появились интегральные микросхемы, а позже и микропроцессоры.

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука