Нельзя исключать, что восхождение ко всемирной славе, по своей стремительности сравнимое с превращением Золушки, стало неожиданностью для них самих, ничто из того, чем они занимались 20 лет назад, не могло этого предвещать. В роли феи оказалась совсем небольшая по численности канадская благотворительная организация CIFAR (Canadian Institute for Advanced Research), выступающая в роли распорядителя средств, выделяемых правительством Канады и провинции Квебек с 1982 года. Свою миссию CIFAR видит в периодической концентрации средств и внимания на какой-то актуальной программе, привлекая для этой цели временные немногочисленные коллективы специалистов из разных стран. Время жизни каждой из программ составляет 10–15 лет, их было порядка полутора десятков, но самой известной из них, принесшей известность CIFAR, стала Neural Computation & Adaptive Perception program, открытая в 2004. К ней были привлечены нынешние тьюринговские лауреаты, а также специалисты по смежным специальностям: в том числе биологи, психологи, физики. Не будь этого импульса, на подиуме могли бы оказаться иные люди.
Спонсирование со стороны CIFAR позволило Хинтону, создававшему «временный трудовой коллектив», привлечь Лекуна и Бенджо с которыми он был связан общими научными интересами с конца 80-х. Сейчас трудно представить, что тогда исследования в области нейронных сетей представляли интерес только для чрезвычайно узкого круга, как их тогда называли, заговорщиков (cabal-like group), а их проекты вероотступническими (renegade). В те скудные времена (lean times) никто не верил будущее нейронных сетей.
Лекун вспоминает: «Период между серединой 90-х и серединой 00-х был мрачным, невозможно было опубликовать ни одной статьи по нейронным сетям, все потеряли интерес к ним. Сети имели плохую репутацию, и на них практически распространялось своего рода табу». Ситуация стала меняться по результатам очередного конкурса по распознаванию изображений ILSVRC (ImageNet ImageNet Large Scale Visual Recognition Challenge), прошедшего в 2012. Основателем этого соревнования стала профессор Стэнфордского университета Фей-Фей Ли, которой в голову пришла оригинальная идея переноса центра тяжести исследований в области AI с моделей и алгоритмов на распознавание изображений сетевыми средствами. Для того чтобы их обучать, потребовалась большая база изображений, названная ImageNet, в качестве прототипа для нее Ли использовала разработанную в Принстонском университете лексическую базу данных английского языка WordNet, представляющую собой тезаурус и набор семантических сетей для английского языка. Вторым идейным источником для ILSVRC стал конкурс PASCAL VOC challenge, учрежденный в 2005, из названия которого следует, что он был нацелен на деление изображений на классы VOC (visual object classes).
С каждым очередным конкурсом ILSVRC точность распознавания возрастала и переломный момент произошел в 2012 году, когда конволюционная нейронная сеть CNN, названная AlexNet, показала результат, равный 16 %. В последующие годы он регулярно повышался, и вскоре сеть могла распознавать изображения лучше человека. Но при этом надо учитывать условность этого сравнения, сеть способна распознавать только определенные, заданные ей типы объектов, в то время восприятие человека этим не ограничено и он способен выносить суждения о распознанных объектах. В создании AlexNet ведущую роль сыграли двое – Алекс Крыжевский, его имя вошло в название сети, и его коллега Илья Сутскевер, оба на тот момент они были аспирантами Джеффри Хинтона в Торонтском университете. Любопытно то, что работа была сделана вопреки сомнениям Хинтона в возможности ее практической реализации. Сеть AlexNet написана на CUDA и работала на кластере, состоявшем из GPU, а ее теоретической основой была работа Яна Лекуна, написанная еще в 1989 году.
Инакомыслящие
Нередко общественное сознание переоценивает роль лидеров и, как следствие, может создаться ложное впечатление, будто кроме возглавляемого ими мэйнстрима ничего не существует. В области ANN, где сейчас работают тысячи исследователей и еще большее число разработчиков, как и в любом ином научно-технологическом направлении, есть многочленные близкие по отношению к мэйнстриму, но есть и отдаленные, а порой и вообще альтернативные направления. О соотношении между ними можно судить разнообразным рейтингам экспертов, входящих в элиту машинного обучения и нейронных сетей. Это самые разнообразные списки типа Top 5, 10 или 25 и т. п.