Сегодня машинное обучение (Machine Learnung, ML) связывают исключительно с ANN, что совершенно естественно, но не только ANN обучаемы, есть и иные обучаемые автоматы. Впервые мысль об обучении машины сформулировал автор шашечной программы Артур Самюэль (Arthur Samuel, 1901–1990) в далеком 1959 году! В статье, описывающей эксперимент машинной игры, он дал следующее определение ML: «Машинное обучение это научное направление, изучающее подходы к тому, как побудить компьютеры к полезным действиям, не обращаясь к программированию». Спустя 60 лет не остается ничего иного, как восхититься его прозорливостью, хотя ML по Самюэлю имеет мало общего с тем, как понимается обучение сегодня, когда обучается не программа, работающая на машине, как у него, а нейронная сеть, работа которой поддерживается машиной. Предложенный им алгоритм не делил процесс игры на обучение (training) и исполнение (inference), как это делается при обучении ANN, он использовал дерево поиска игровых позиций, достижимых из текущего состояния, с применением алгоритма альфа-бета-отсечения (alpha-beta pruning). Алгоритм отсечения перебирает и оценивает все ветви дерева поиска до тех пор, пока не найдено значение хуже, чем вычисленное для предыдущих ветвей. Этот подход впоследствии часто использовали для программирования различных антагонистических игр, в том числе очень модной одно время машинной игры в шахматы. Суть обучения в данном случае заключалась в том, что веса оценочной функции изменяются в процессе игры. В начальный период истории AI на метод альфа-бета-отсечения возлагались большие надежды, на него делали ставку такие апостолы того времени Аллен Ньюэлл и Герберт Саймон, Джон Маккарти и Марвин Минский.
Этот же метод независимо от них был открыт отечественным ученым А. Л. Брудно (1918–2009), назвавшим его «методом граней и оценок». Будучи изначально математиком, Александр Львович вел в Математическом институте им. В. А. Стеклова АН СССР семинар, содействовавший тому, что у многих его участников позднее возник интерес к электронным вычислительным машинам и кибернетике. В начале 1950-х годов А. Л. Брудно был привлечен член-корреспондентом АН СССР И. С. Бруком к созданию программ для разрабатывавшейся под его руководством ЭВМ М-2. Позже Брудно работал Институте электронных управляющих машин (ИНЭУМ).
Менее известны работы Михаила Львовича Цетлина в области близкой к ML. Цетлин – один из представителей плеяды выдающихся математиков-кибернетиков 50–70-х годов, ученик одного из крупнейших математиков XX века Израиля Моисеевича Гельфанда. Он работал над созданием устройств, которые могли бы демонстрировать целесообразное поведение в случайных средах. Предпосылками исследований стали прежние работы Цетлина, связанные с изучением поведения подопытных животных. Он интерпретировал поведение автомата как поведение животного, контактирующего со средой, которая в зависимости от его поведения наказывала или поощряла, при этом автомат мог обучаться, то есть стремиться к уменьшению числа наказаний за счет изменения своего внутреннего состояния.
Более полувека эта часть научного наследия Цетлина оставалась известна лишь узкому кругу отечественных специалистов, однако в апреле 2018 года вышла работа Гранно Оле-Кристофера, профессора норвежского Университета Агдера, директора Центра исследований в области искусственного интеллекта, имеющая необычный заголовок «Машина Цетлина. Теоретико-игровой бандитский подход к оптимальному распознаванию образов с пропозициональной логикой» (