Читаем О достоверности полностью

640. Или я должен сказать, что это предложение исключает определенного родаошибку?

641. “Он сказал мне это сегодня, — я не могу ошибаться в этом”. — А что, если это все-таки окажется ошибочным?! — Не следует ли здесь выявить различия в том, каким образом нечто “оказывается ошибочным”? — Ну, а как можно показать,что ошибочным было мое высказывание? Ведь в данном случае свидетельству противостоит свидетельство, и надо решить,какое из них должно уступить.

642. Но допустим, человек вызывает недоверие: что, если бы я, скажем, внезапно проснулся и заявил: “Представь себе, я только что вообразил, что меня зовут Л. В.”? — Кто же поручится, что я как-нибудь снова не проснусь и не объявлю этостранной фантазией и т. д.

643. Можно, конечно, представить себе случай, и такие случаи бывают, когда, пробудившись, уже больше не сомневаются в том, что было фантазией, а что действительностью. И все-таки подобный случай или же его возможность не дискредитирует предложения “Я не могу в этом ошибаться”.

644. Ибо в противном случае разве не было бы так дискредитировано какое бы то ни было утверждение?

645. Я не могу в этом ошибаться, — но, пожалуй, мне может однажды прийти в голову мысль о том, что я сознаю, верно или ошибочно, свою неспособность к суждению.

646. Правда, если бы это происходило всегда или часто, то характер языковой игры полностью изменился бы.

647. Есть разница между ошибкой, для которой как бы предусмотрено место в игре, и чем-то совершенно неправильным, что бывает как исключение.

648. Я в состоянии убедить и другого в том, что в этом я не могу ошибаться.

Я говорю кому-то: “Такой-то человек был у меня сегодня утром и рассказал мне то-то”. Если это вызывает у него удивление, он, может быть, спросит меня: “А ты не ошибаешься?” Это может означать: “И это действительно случилось сегодня утром?"или же:

“Ты уверен, что понял его правильно?”. — Легко понять, с помощью каких пояснений я мог бы показать, что я не ошибся во времени и не понял его рассказ превратно. Но все это неможет показать, что мне это не приснилось или же не пригрезилось в полудреме. Это не показывает также, что в ходе своего повествования я, по-видимому, не оговорился(такие вещи бывают).

649. (Однажды я сказал кому-то — по-английски, — что форма какой-то определенной ветки характерна для ветви вяза, на что он мне возразил. Затем мы проходили мимо ясеня, и я сказал:

“Посмотри, вот ветви, о которых я тебе говорил”. Он ответил: “Но это же ясень”, — а я: “Я всегда, говоря о вязе, имел в виду ясень”.)

650. Это ведь означает: возможность ошибкив определенных (притом многочисленных) случаях можно исключить. Таким образом исключают (также) ошибку в подсчете. Ибо если вычисление проверено бесчисленное множество раз, то уже не скажешь:

“Все-таки правильность его только очень вероятна, так как всегда может закрасться еще одна ошибка”. Ведь если однажды показалось, что обнаружена какая-то ошибка, — то почему бы тогда нам не предположить ошибку в данном случае?

651. Я не могу ошибаться в том, что 12 х 12=144. И тут нельзя противопоставлять математическуюдостоверность относительной недостоверности эмпирических предложений. Ибо математическое предложение получается путем ряда действий, которые никоим образом не отличаются от действий в остальной жизни и которые в равной мере подвержены забыванию, недосмотру, заблуждению.

652. Ну разве можно пророчить, что люди никогда не опровергнут нынешние арифметические предложения, никогда не скажут, что только теперь узнали, как обстоит дело? Но неужели это могло бы оправдать какое-то сомнение с нашей стороны?

653. Если предложение “12 х 12=144” не подлежит сомнению, то это должно относиться и к нематематическим предложениям.

26.4.51

654. Но против этого может быть много возражений. — Во-первых, само “12 х 12 и т. д.” — математическоепредложение, из чего можно заключить, что только такие предложения подпадают под это определение. И если это заключение просчитано математически, то требуется привести столь же достоверное предложен ние, которое бы повествовало о процессе этого вычисления, не будучи математическим. — Я думаю о таком предложении, как: “Вычисление 12 х 12 и т. д., выполненное людьми, умеющими считать, в подавляющем большинстве случаев дает 144”. Это предложение никто не станет оспаривать, а оно, конечно же, является нематематическим. Но обладает ли оно достоверностью математического?

655. На математическое предложение как бы официально поставлена печать бесспорности. Это означает: “Спорьте о других вещах; этоустановлено прочно, служит как бы некоей петлей, на которой может поворачиваться ваш спор”.

656. О предложении же, что меня зовут Л.В., - этого не скажешь. Как и об утверждении, что такие-то люди выполнили это вычисление правильно.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия