Целые числа могут быть знаковыми и беззнаковыми. Сначала рассмотрим формат более простых беззнаковых чисел. Если у нас есть
Integer
(знаковое целое) и Cardinal
(беззнаковое целое. В имеющейся реализации они имеют 32 разряда, но при переходе на 64-разрядные компиляторы следует ожидать что эти типы также станут 64-разрядными. В частности, в 16-разрядном Turbo Pascal тип Integer
был 16-разрядным а типа Cardinal
там не было).
Знаковые числа устроены несколько сложнее. Старший из
Такая на первый взгляд не очень удобная система позволяет унифицировать операции для знаковых и беззнаковых чисел. Для примера рассмотрим число 11111110. Если его рассматривать как беззнаковое, оно равно 254, если как знаковое, то -2. Вычитая из него, например, 3, мы должны получить 251 и -5 соответственно. Как нетрудно убедиться, в беззнаковой форме 251 — это 11111011. И число -5 в знаковой форме — это тоже 11111011, т. е. результирующее состояние разрядов зависит только от начального состояния этих разрядов и вычитаемого числа и не зависит от того, знаковое или беззнаковое число представляют эти разряды. И это утверждение справедливо не только для выбранных чисел, но и вообще для любых чисел, если ни они, ни результат операции не выходят за пределы допустимого диапазона. То же самое верно для операции сложения. Поэтому в системе команд процессора нет отдельно команд знакового и беззнакового сложения и вычитания — форматы чисел таковы, что можно обойтись одной парой команд (для умножения и деления это неверно, поэтому существуют отдельно команды знакового и беззнакового умножения и деления).
Ранее мы специально оговорили, что такое удобное правило действует только до тех пор, пока аргументы и результат остаются в рамках допустимого диапазона. Рассмотрим, что произойдет, если мы выйдем за его пределы. Пусть в беззнаковой записи нам нужно из 130 вычесть 10. 130 — это 10000010, после вычитания получим 01111000 (120). Но если попытаться интерпретировать эти двоичные значения как знаковые числа, получится, что из -126 мы вычитаем 10 и получаем 120. Такими парадоксальными результатами приходится расплачиваться за унификацию операций со знаковыми и беззнаковыми числами.