Две категориальные переменные или больше. Если вы используете данные опросов и они представлены номинальными категориями (например, мужской и женский пол; молодой, средний или пожилой возраст), то вам понадобится ряд аналитических процедур для анализа категориальных данных. Результаты этого вида анализа часто оформляют в виде таблицы, в ячейках которой указано количество наблюдений. Например, если вы устанавливаете связь между полом и продолжительностью жизни, то обнаружите, что численность мужчин и женщин в молодом и среднем возрасте примерно одинакова, но поскольку женщины обычно живут несколько дольше, чем мужчины, то в старшем возрасте их численность будет выше. Если эта или подобная закономерность присутствует в вашем массиве данных, то таблица покажет значимую (то есть вряд ли случайную) взаимосвязь в соответствии со значением такого статистического критерия, как хи-квадрат. Взаимосвязь может быть значимой при уровне значимости 0,05 или 0,01. Такие бинарные категориальные переменные, как пол, можно также обрабатывать с помощью регрессионного анализа, используя при этом фиктивные переменные: то есть такие, которые получают значение 0 при отсутствии признака (например, мужского пола), и 1 при его наличии.
Более чем две количественные переменные. Если количественных переменных более двух, то проводится углубленный анализ корреляционной связи, называемый регрессионным анализом: иногда множественной регрессией (если для объяснения динамики одной переменной используются несколько других переменных), а иногда линейной регрессией (если взаимосвязь между переменными остается стабильной (линейной) во всех интервалах их значений). Регрессия представляет собой метод подбора уравнения (или линии, если речь идет о графическом выражении), описывающего совокупность собранных в прошлом данных. Если вам это удалось, то с помощью уравнения регрессии можно прогнозировать поведение переменных в будущем. В регрессионной модели каждой независимой переменной приписывается определенный коэффициент, отражающий (или прогнозирующий) ее «вес» в модели.
В качестве примера множественной линейной регрессии можно привести случай из практики экономиста из Принстона Орли Ашенфельтера. Он использовал регрессионный анализ для прогнозирования аукционных цен на марочные французские вина. Его прогноз аукционных цен основывался на погоде в период сбора урожая вин этого года – и вызвал шок в среде экспертов по винам и даже привел их в ярость. (Газета New York Times опубликовала на первой странице статью об этом прогнозе под названием «Уравнение цены на вино вывело из строя многие носы»[38].) Если у вас есть хорошее уравнение, то зачем вам эксперты?
Большинство экспертов сходятся в том, что хорошее вино получается в том случае, если предшествующая зима была дождливой, в сезон созревания винограда стояла теплая погода, а в сезон его сбора – сухая. Таким образом, Ашенфельтер выбрал три независимые переменные, относящиеся к погоде и влияющие на качество винограда: средняя температура воздуха в период созревания и количество осадков в период сбора винограда, а также количество осадков в предшествующую зиму. Кроме того, поскольку вкус вина, как правило, зависит от его выдержки, еще одной независимой переменной стала продолжительность выдержки в годах.
Качество сбора винограда влияет на цену зрелого вина, которая и становится зависимой переменной, которую Ашенфельтер пытался предсказывать. Он собрал информацию о ценах на лондонском аукционе за шесть бутылок бордо шато в 1960–1969 годы. Этот период был выбран потому, что вина, сделанные из урожая сборов этих лет, уже созрели, а в их качестве не было сомнений. Данные о значениях независимых переменных предоставило бюро прогнозов погоды из района выращивания винограда.
Ашенфельтер составил регрессионное уравнение логарифма цены вина, включающее показатели возраста вина и параметров погоды. Он получил такое выражение:
Качество вина = 12,145 (константа) + 0,0238 × Возраст вина + 0,616 × Средняя температура периода созревания 0,00386 × Количество осадков в период сбора урожая + 0,0017 × Количество осадков предшествующей зимой.