Читаем О чем говорят цифры. Как понимать и использовать данные полностью

Например, самая распространенная в мире аналитическая компьютерная программа Microsoft Excel (хотя большинство пользователей считает ее всего лишь электронной таблицей) способна решать некоторые задачи статистического анализа (и визуальной аналитики), равно как и генерировать отчеты. Однако если вам необходимо обработать большой массив данных или построить сложную статистическую модель, то возможностей Excel не хватит. Поэтому к данной категории программного обеспечения она не относится. В корпоративной среде для решения аналитических задач в дополнение к Microsoft Excel часто используют и другие программы Microsoft, в том числе SQL Server (главным образом предназначенную для работы с базами данных и решения некоторых аналитических задач) и SharePoint (обеспечивает совместную работу над проектом и решение некоторых аналитических задач).

<p>Типы моделей</p>

Аналитики и компании для решения аналитических задач и принятия решений на основе анализа используют множество типов моделей. Мы не собираемся учить читателей статистике, но считаем, что им было бы полезно знать, какие критерии применяют количественные аналитики, выбирая наиболее адекватную модель. Это поможет читателям сделать первые шаги в бизнес-аналитике и твердо усвоить ее основы. Если мы хотим знать, какие типы моделей лучше всего подойдут в том или ином случае, надо оценить специфику ситуации с точки зрения тех, кто принимает решения (или их аналитиков).

• Чтобы правильно выбрать модель, надо ответить на три основных вопроса.

• Сколько переменных подлежат анализу? Возможны такие варианты ответа: одна переменная (одномерная модель), две переменные (двумерная модель), три и более переменных (многомерная модель). Последний вариант ответа достаточен для решения любой проблемы.

• Требуется ли нам описание решения проблемы или просто ответы на поставленные вопросы? Описательная статистика просто описывает имеющиеся данные и не пытается делать выходящих за их рамки обобщений. Средние значения, медианы и стандартные отклонения – вот классический пример описательной статистики. Они весьма полезны, но не слишком интересны с математической или статистической точки зрения. Индуктивная статистика исследует выборку из какой-либо совокупности и распространяет выводы о средних характеристиках ее объектов на всю совокупность. Примеры такой статистики – корреляционный и регрессионный анализ (см. далее): они включают оценку вероятности того, что взаимосвязи, выявленные на основе выборки, характерны и для всей совокупности. Статистики и количественные аналитики обычно отдают предпочтение индуктивной статистике по сравнению с описательной.

• Насколько точно можно оценить значения интересующих переменных? Некоторые методы оценки описаны во вставке «Методы измерения данных».

Конкретный тип используемой вами (или вашими квантами) модели зависит от того, какого вида ваш аналитический проект и какого типа данные. Некоторые характеристики проектов и массивов данных, а также моделей, выбранных для их обработки, описаны ниже. Мы рассмотрели далеко не все типы моделей, но из тех, которые изо дня в день используются организациями для аналитики, здесь представлены примерно 90 процентов.

Модели с двумя числовыми переменными. Если требуется установить взаимосвязь между двумя числовыми переменными, то проще всего это сделать с помощью корреляционного анализа. Это один из простейших видов статистического анализа. В типичном случае с его помощью можно установить, меняется ли одна переменная с изменением другой. Для примера возьмем рост и вес человека. Можно ли утверждать, что вес человека увеличивается с увеличением его роста? Как правило, так и бывает, поэтому можно утверждать, что эти две переменные коррелируют между собой. Поскольку корреляционный анализ является одним из методов индуктивной статистики, существуют способы определить: может ли определенный уровень корреляции быть случайным? Если вам, например, говорят, что «статистическая значимость связи равна 0,05», то это означает, что в пяти случаях из ста наблюдается согласованное изменение анализируемых показателей.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес