Читаем Ноль: биография опасной идеи полностью

Ноль и бесконечность вечно борются за поглощение всех чисел. Как в манихейском кошмаре, эти двое сидят на противоположных полюсах числовой сферы, всасывая в себя числа, как маленькие черные дыры. Возьмите любое число на плоскости. Для примера пусть это будет i / 2. Возведем его в квадрат, в куб, в четвертую степень, в пятую, шестую, седьмую степень… Продолжаем умножать. Числа медленно по спирали приближаются к нолю, как вода по трубе. Что произойдет с 2i? В точности противоположное. Возведем его в квадрат, в куб, в четвертую степень… Числа по спирали устремятся вовне (рис. 41). Однако на числовой сфере эти две кривые — дубликаты друг друга, они — зеркальные отражения (рис. 42). Такова судьба всех чисел на комплексной плоскости. Они неизбежно притягиваются к нолю или к бесконечности. Единственные числа, которые избегают этой участи, — те, что равноудалены от соперников, числа на экваторе, такие как 1, –1 и i. Эти числа, с одинаковой силой притягиваемые и нолем, и бесконечностью, вечно двигаются по спирали на экваторе и не могут вырваться. (Вы можете увидеть это на своем калькуляторе. Введите число — любое число. Возведите его в квадрат. Результат снова возведите в квадрат. Делайте это снова и снова. Последовательность быстро устремится к бесконечности или к нолю, если только вы изначально не ввели 1 или –1. Избавления нет.)

Рис. 41. Спиральное движение вовне и внутрь на плоскости

Рис. 42. На сфере — зеркальное отражение

<p>Бесконечный ноль</p>

Моя теория тверда, как скала; каждая стрела, направленная в нее, быстро вернется к стрелку. Откуда я это знаю? Я это изучал… Я проследил корни, так сказать, до первой непогрешимой причины всех созданных вещей.

Георг Кантор

Бесконечность больше не была тайной, она стала обыкновенным числом. Это был наколотый на булавку образец, приготовленный для изучения, и математики быстро взялись за анализ. Однако в самых глубинах бесконечности, угнездившись в огромном континууме чисел, все время появлялся ноль. Самое поразительное то, что сама бесконечность может быть нолем.

В прежние времена, до того как Риман увидел, что комплексная плоскость — на самом деле сфера, функции типа 1 / x ставили математиков в тупик. Когда x стремится к нолю, 1 / x делается все больше и больше и в конце концов просто взрывается и стремится к бесконечности. Риман сделал совершенно приемлемым приближение к бесконечности, поскольку бесконечность — это всего лишь точка на сфере, такая же, как любая другая точка; она больше не является чем-то, чего следует бояться. Математики начали анализировать и классифицировать точки, в которых функции взрываются: сингулярности, или особые точки.

Для кривой 1 / x сингулярностью является точка x = 0. Это очень простой вид сингулярности, которую математики называют полюсом. Существуют и другие виды сингулярности, например, для кривой sin (1 / x) точка x = 0 — существенно особая точка. Существенно особые точки — странные твари, рядом с сингулярностью такого сорта кривая делается абсолютно безумной. Она колеблется вверх и вниз все быстрее и быстрее по мере приближения к сингулярности, мечется от положительных значений к отрицательным и обратно. Даже в самой малой окрестности сингулярности кривая принимает почти все вообразимые значения снова и снова. Однако как бы странно эти функции не вели себя вблизи сингулярности, они больше не являлись тайной для математиков, которые учились вскрывать бесконечность.

Главным анатомом бесконечности был Георг Кантор. Хотя он в 1845 году родился в России, большую часть жизни Кантор провел в Германии. И именно в Германии — стране Гаусса и Римана — были открыты секреты бесконечности. К несчастью, Германия была также родиной Леопольда Кронекера, математика, который загнал Кантора в психиатрическую больницу.

В основе конфликта Кантора с Кронекером лежало представление о бесконечности, представление, которое может быть проиллюстрировано простой загадкой. Представьте себе большой стадион, полный людей. Вам нужно узнать, больше ли на стадионе мест, чем зрителей, или их число одинаково. Вы могли бы пересчитать людей и узнать, сколько имеется мест, и потом сравнить количества, однако это заняло бы много времени. Есть гораздо более разумный способ. Просто попросите всех присутствующих сесть. Если останутся незанятые места, значит, людей меньше, чем мест. Если какое-то количество людей останется стоять, значит, мест слишком мало. Если все места окажутся заняты и никто не останется стоять, то число зрителей и мест одинаково.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука