Воспоминание об этом угощении почти изгладилось из памяти Дешана; но вот однажды, лет десять спустя, проходя мимо ресторана на бульваре Пуассоньер, он увидел в окне пуддинг очень аппетитного вида.
Он входит, спрашивает себе порцию этого кушанья, но ему отвечают, что пуддинг раньше был заказан одним посетителем.
— Г. Фонжибю! — восклицает конторщица, заметив досаду Дешана. — Не будете ли вы так добры уступить часть вашего плумпуддинга вот этому господину?
Дешан не без труда узнал г. Фонжибю в этом пожилом, почтенном господине, напудренном добела, в мундире полковника, обедавшем за соседним столиком. Полковник любезно уступил ему часть своего пирожного.
Протекло много лет, у Дешана совершенно вылетели из головы и пуддинг, и г. Фонжибю. Но однажды его пригласили обедать в один дом, где должны были подавать за столом настоящий английский плумпуддинг. Дешан принял приглашение, но, смеясь, предупредил хозяйку дома, что без г. Фонжибю дело никак не обойдется, и позабавил все общество, рассказав о своем приключении.
В назначенный день Дешан является. Десять человек гостей занимают приготовленные им места за столом и ждут появления великолепного плумпуддинга. Кто-то из гостей стал поддразнивать Дешана по поводу его рокового Фонжибю, как вдруг лакей докладывает: «Господин Фонжибю!» Появляется старик, еле передвигающий ноги, и медленно обходит вокруг стола со смущенным видом. Что это — призрак? Или чья-нибудь шутка? Время было масленичное. Сперва Дешан вообразил, что это непременно шутка. Но, когда старец подошел ближе, он вынужден был признать в нем самого г. Фонжибю. «Волосы у меня поднялись дыбом, — пишет Дешан. — Сам Дон-Жуан, наверно, не так испугался при виде Каменного гостя». Все, однако, объяснилось очень просто. Г. Фонжибю, приглашенный обедать к одному из жильцов дома, ошибся номером квартиры.
В самом деле, во всей этой истории встречается целая серия совпадений самых поразительных, и мы вполне понимаем восклицание Дешана при одном воспоминании об этом приключении: «Три раза в жизни мне случалось есть плумпуддинг, и всякий раз при этом присутствовал г. Фонжибю! Почему? Случись это в четвертый раз, я, кажется, сошел бы с ума!»
Другая игра случая: за игорным столом в Монте-Карло один и тот же номер рулетки вышел пять раз подряд [Этот выход понтированного номера дает в первый раз 35 луидоров на один, то есть 700 франков; второй выход того же номера, на котором оставлена сумма выигрыша, дает уже 24500 франков. Если оставить ставку и на третий раз, то в случае выхода того же номера она дала бы 857500 франков. Но устав банка этого не допускает и определяет максимум ставки в 9 луи; однако он допускает выигрыш до 120000].
Случалось на той же рулетке, что красная выходила двадцать один раз подряд. А между тем здесь имеется два миллиона шансов против одного на то, чтобы номер этот не выходил подряд.
Не проходит года в Париже, чтобы откуда-нибудь с пятого этажа не упал горшок с цветами и не убил наповал мирного пешехода. Нельзя, следовательно, отрицать, что бывают изумительные совпадения; что и говорить, — случай проделывает иногда необыкновенные штуки. Я первый готов с этим согласиться, но ведь все можно объяснить случайностью.
Случайность можно выразить цифрой, — это и есть, как говорится, теория вероятности. Так, если я наугад вытаскиваю карту из полной колоды, и она оказывается шестеркой червей, то я вывожу заключение, что это случай дал мне эту шестерку, — один только случай, потому что я не знал, одинаковы ли карты, хорошо ли стасована колода и почему мне попалась именно шестерка, а не какая-нибудь другая карта.
Итак, случайность дала мне шестерку червей; но эту случайность можно выразить цифрами. На получение шестерки червей из колоды в 52 карты у меня был один шанс против пятидесяти двух; на получение шестерки — один шанс против тринадцати, на получение червонки — один шанс против четырех, а на получение красной карты — один шанс против двух. Наконец, у меня был 51 шанс против 52 на то, чтобы не вытянуть какую-либо карту, заранее намеченную.
Итак, математически я могу приурочить к тому или другому событию вероятность, выражающуюся в цифрах. Но трудность состоит не в исчислении различных математических вероятностей, хотя это тоже вещь мудреная и может поставить в тупик гениальнейшего математика, главная же трудность — в применении этих математических законов к реальным событиям.
В математике доказывается, что исчисление вероятностей применимо только в том случае, если опыты повторяются бесконечно, и тогда только оно бывает верным.
Итак, передо мной колода карт; у меня всего один шанс против пятидесяти двух на то, чтобы вытащить шестерку червей, а между тем очень может быть, что я и вытащу эту карту. Этому ничто не мешает, и это столь же вероятно, как и получение всякой другой карты. Этой маленькой вероятностью нельзя пренебрегать. Поэтому с моей стороны было бы неразумно заключать что-либо из того, что я, наметив заранее шестерку червей, вытащу именно эту карту.