Появившиеся в последние десятилетия современные методы отображения гемодинамических процессов, такие как, функциональная магниторезонансная томография (фМРТ) или позитронно-эмиссионная томография (ПЭТ), позволяют получить точную (до нескольких миллиметров) пространственную локализацию активности участков мозга. Однако их временное разрешение (единицы секунд) на несколько порядков ниже скорости реально протекающих нейронных процессов. В отличие от метода фМРТ, в котором активность нейронов оценивается опосредованно, т. е. по изменению локального кровотока за счёт определения разницы в насыщении крови кислородом (так называемого Blood Oxygen Level Dependent, или BOLD signal), МЭГ способна почти мгновенно обнаруживать источники, связанные с изменением суммарной постсинаптической активности нейронов.
Лишь технологии ЭЭГ и МЭГ, обладающие возможностью непосредственной регистрации электрической нейронной активности, могут обеспечить получение точной временной информации о мозговых процессах неинвазивным путём. ЭЭГ и МЭГ фиксируют, соответственно, электрические и магнитные поля, порождаемые согласованной активностью групп нейронов мозга.
МЭГ – одна из современных технологий нейроимиджинга. Данный метод обладает уникальными характеристиками, позволяющими с высокой точностью локализовать источники активности нейронных популяций коры головного мозга человека в пространстве и времени.
История
Отцом МЭГ общепризнан канадский учёный Дэвид Коэн и, хотя изначально до 1965 года, он был физиком-ускорителем в Аргоннской лаборатории, специализируясь на сильных магнитных полях и использовании мощной ядерной защиты именно он сделал многие из первых новаторских измерений в области магнитных полей, создаваемых органами человека: сердцем, лёгкими и, наконец, мозгом).
На каком-то этапе своей карьеры он заинтересовался измерением очень слабых магнитных полей, которые, например, могли бы создаваться слабыми естественными токами в человеческом теле. Для исследования в качестве детектора он применил гигантскую медную индукционную катушку с миллионами витков провода.
Основной проблемой биомагнетизма оказалась слабость сигнала по сравнению с чувствительностью детекторов и конкурирующим шумом окружающей среды.
В 1963 году Коэн предложил метод использования специального помещения с магнитной защитой для исключения влияния внешних магнитных возмущений, например, магнитного поля Земли и излучений промышленных объектов.
Примерно в то же время появились сообщения о первом «биомагнитном измерении сердечных токов» (магнитокардиограммы).
Рисунок 24 Экранированная комната
В период с 1963 по 1975 год производились многочисленные измерения электрических свойств сердца человека. Существовало процветающее сообщество, изучающее электрическое поле сердца (ЭКГ), так что первые магнитные измерения (магнитокардиограммы), полученные Баулем и МакФи, считались любопытным побочным эффектом процветающей ЭКГ. Считалось что в магнитном поле сердца не может быть новой информации.
Все эти ранние биомагнитные измерения, как правило, были слишком «зашумлёнными», по причине низкой чувствительности детекторов, и неполного магнитного экранирования.
Для решения второй проблемы в 1969 году Коэн построил тщательно экранированную комнату в Массачусетском технологическом институте. Но ему все ещё требовался более чувствительный детектор.
К счастью, Джеймс Циммерман (1923—1989) только что разработал чрезвычайно чувствительный детектор, названный SQUID – сверхпроводящее устройство квантовой интерференции.
Коэн и Циммерман установили этот детектор в экранированной комнате, чтобы исследовать магнитные поля сердца (MCG). Теперь сигналы были почти такими же разборчивыми, как и сигналы ЭЭГ. Это стимулировало интерес физиков, которые искали возможности использования СКВИДов. После этого начали измеряться различные типы спонтанных и вызванных биомагнитных излучений. Так открылась новая эра в биомагнетизме.
Сам Дэвид Коэн утверждал, что ему удалось обнаружить биомагнитные излучения не только отдельных органов, но и «постоянное магнитное поле человека». Интересен и тот факт, что, заставив «тихую комнату» вибрировать с частотой 60 Гц, ему удалось значительно повысить её эффективность в защите от внешних магнитных полей.
Сначала с помощью одного СКВИД-детектора последовательно измеряли магнитные поля перемещая его вокруг головы испытуемого. Это было громоздко и неудобно, поэтому в 1980-х производители МЭГ стали объединять датчики в массивы, покрывающие большую площадь головы. Современные массивы МЭГ устанавливаются в шлемообразной форме, и обычно содержат 306 датчиков, погруженных в термос с жидким гелием при температуре около -269° С.
Сегодня большинство биомагнитных измерений применяется к человеческому мозгу. Обычные амплитуды магнитных полей, создаваемых мозгом, чрезвычайно малы, они не превышают нескольких сотен фемтотесла (10 —15 Тл). Для сравнения, магнитное поле Земли составляет от 10 -4 до 10 -5 Тл, а магнитно-резонансная томография обычно составляет 1,5—3 Тл.