Читаем Нейросети практика полностью

В данном примере мы определяем функцию `crop_image`, которая принимает изображение и новый размер в качестве параметров. Функция вычисляет координаты области для обрезки, исходя из размера изображения и нового размера. Затем мы открываем изображение с помощью `Image.open` и вызываем функцию `crop_image` для обрезки изображения до размера 200x200 пикселей. Результат обрезки выводится с помощью метода `show`.

3. Изменение размера (Resizing):

Пример кода на Python для изменения размера изображения с использованием библиотеки PIL:

```python

from PIL import Image

def resize_image(image, new_size):

resized_image = image.resize(new_size)

return resized_image

image = Image.open('image.jpg')

resized_image = resize_image(image, (500, 500))

resized_image.show

```

В данном примере мы определяем функцию `resize_image`, которая принимает изображение и новый размер в качестве параметров. Функция использует метод `resize` из библиотеки PIL для изменения размера изображения. Затем мы открываем изображение с помощью `Image.open` и вызываем функцию `resize_image` для изменения размера изображения до размера 500x500 пикселей. Результат изменения размера выводится с помощью метода `show`.

4. Нормализация (Normalization):

Пример кода на Python для нормализации изображения с использованием библиотеки NumPy:

```python

import numpy as np

from PIL import Image

def normalize_image(image):

normalized_image = (image – np.min(image)) / (np.max(image) – np.min(image))

return normalized_image

image = np.array(Image.open('image.jpg'))

normalized_image = normalize_image(image)

```

В данном примере мы определяем функцию `normalize_image`, которая принимает изображение в виде массива NumPy в качестве параметра. Функция вычисляет нормализованное изображение путем вычитания минимального значения пикселей из изображения и деления на разницу между максимальным и минимальным значениями пикселей. Затем мы открываем изображение с помощью `Image.open`, преобразуем его в массив NumPy с помощью `np.array`, и вызываем функцию `normalize_image` для нормализации изображения.

Комбинация этих методов предобработки изображений может помочь улучшить качество и производительность моделей глубокого обучения. Выбор конкретных методов зависит от характеристик данных, требований задачи и особенностей модели, которая будет использоваться для обработки изображений.

– Сверточные нейронные сети (CNN): Широко используются для обработки изображений и распознавания образов. Включают сверточные слои для извлечения признаков и пулинг слои для уменьшения размерности.

Сверточные нейронные сети (Convolutional Neural Networks, CNN) являются мощным инструментом для обработки изображений и распознавания образов. Они успешно применяются в таких задачах, как классификация изображений, сегментация, обнаружение объектов и многих других. Вот некоторые основные концепции и компоненты сверточных нейронных сетей:

1. Сверточные слои (Convolutional Layers): Сверточные слои являются основным строительным блоком CNN. Они применяют фильтры (ядра свертки) к входным данным для извлечения локальных признаков. Фильтры перемещаются по входным данным с шагом (stride), выполняя свертку, и результатом является карта признаков (feature map). Каждый фильтр извлекает различные характеристики изображения, такие как границы, текстуры и формы.

2. Пулинг слои (Pooling Layers): Пулинг слои используются для уменьшения размерности карты признаков и устранения избыточной информации. Наиболее распространенным методом пулинга является пулинг по среднему значению (Average Pooling) и пулинг по максимуму (Max Pooling). Пулинг слои помогают уменьшить вычислительную сложность модели и создать инвариантность к малым сдвигам искомых признаков.

3. Полносвязные слои (Fully Connected Layers): Полносвязные слои обрабатывают глобальные признаки, извлеченные из карты признаков, и связывают их с классами или выходами модели. Полносвязные слои обычно следуют после сверточных и пулинг слоев и преобразуют признаки в формат, пригодный для классификации или регрессии.

4. Функции активации (Activation Functions): Функции активации применяются после каждого слоя в нейронной сети и добавляют нелинейность в модель. Распространенными функциями активации в CNN являются ReLU (Rectified Linear Unit), которая подавляет отрицательные значения, и softmax, которая преобразует выходы в вероятности для многоклассовой классификации.

Процесс обучения сверточных нейронных сетей включает подачу входных изображений через слои сети, вычисление потерь (ошибки) и использование алгоритма обратного распространения ошибки (Backpropagation) для обновления весов сети. Обучение CNN основано на большом количестве размеченных данных, которые используются для оптимизации модели и настройки ее параметров.

Рассмотрим примеры:

1. Пример сверточного слоя (Convolutional Layer):

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии