Читаем Нейросети практика полностью

Предобработка текста является важным этапом при работе с текстовыми данными в задачах глубокого обучения. Она включает ряд операций для подготовки текста к дальнейшей обработке и анализу. Подробнее о некоторых операциях предобработки текста:

– Очистка текста: В этом шаге происходит удаление нежелательных символов, которые могут быть неинформативны или помеховыми. Например, можно удалить знаки препинания, специальные символы или цифры.

– Токенизация разделяет текст на отдельные токены или слова. Каждое слово становится отдельным элементом, что упрощает дальнейшую обработку. Например, предложение "Привет, как дела?" может быть токенизировано в ["Привет", ",", "как", "дела", "?"].

– Удаление стоп-слов: Стоп-слова – это общие слова, которые не несут значимой информации для анализа текста, такие как предлоги, союзы и артикли. Удаление стоп-слов помогает сократить размер словаря и убрать шум из данных.

– Лемматизация сводит слова к их базовой форме (лемме). Например, слова "бежал", "бежит" и "бежим" будут приведены к лемме "бежать". Лемматизация позволяет учесть разные формы слова как одну единицу, что помогает улучшить качество анализа.

– Преобразование регистра: Можно привести все слова к нижнему или верхнему регистру для унификации данных и избежания избыточных дубликатов. Например, все слова могут быть приведены к нижнему регистру для сведения слов с разным регистром к единому представлению.

Операции предобработки текста выполняются для создания чистых и однородных данных, которые можно использовать для обучения моделей глубокого обучения. Выбор конкретных операций предобработки зависит от характеристик текстовых данных и конкретной задачи, которую требуется решить.

– Векторное представление слов (word embeddings):

Векторное представление слов, также известное как word embeddings, является методом преобразования слов в числовые векторы. Это позволяет представить слова в виде чисел, которые могут быть использованы в алгоритмах машинного обучения, включая нейронные сети.

Преимущество векторного представления слов заключается в том, что оно сохраняет семантическую информацию о словах. Слова, имеющие близкое значение или используемые в схожих контекстах, будут иметь близкие числовые векторы. Это позволяет модели улавливать смысловые связи между словами и обобщать информацию на основе контекста.

Существует несколько методов создания векторных представлений слов, и два из наиболее популярных примера – это Word2Vec и GloVe.

Word2Vec: Word2Vec является алгоритмом, который обучает векторные представления слов на основе их соседства в больших текстовых корпусах. Алгоритм стремится сделать векторы слов, близкие друг к другу, если слова часто появляются в одних и тех же контекстах. Word2Vec предоставляет две архитектуры: Continuous Bag of Words (CBOW) и Skip-gram.

GloVe: GloVe (Global Vectors for Word Representation) также является методом создания векторных представлений слов. Он использует статистику совместной встречаемости слов в корпусе текста для определения семантических связей между словами. Главная идея GloVe заключается в том, чтобы сопоставить векторное представление каждого слова с его вероятностью появления в контексте других слов.

Оба метода, Word2Vec и GloVe, позволяют получить плотные векторные представления слов, в которых семантически похожие слова имеют близкие числовые значения. Эти векторные представления могут быть использованы в моделях глубокого обучения для анализа текста, классификации, генерации текста и других задач, где требуется работа с текстовыми данными.

Допустим, у нас есть набор предложений, и мы хотим создать векторные представления слов с использованием Word2Vec. Рассмотрим следующий пример:

Предложения:

1. "Я люблю готовить вкусную пиццу."

2. "Она предпочитает читать книги вечером."

Шаги для создания векторных представлений слов с помощью Word2Vec:

– Токенизация: Разделим каждое предложение на отдельные слова.

Результат:

Предложение 1: ["Я", "люблю", "готовить", "вкусную", "пиццу"]

Предложение 2: ["Она", "предпочитает", "читать", "книги", "вечером"]

– Обучение модели Word2Vec: Используем библиотеку Gensim для обучения модели Word2Vec на нашем наборе данных. Установим размерность векторов равной 100 и окно контекста равное 5.

Код на Python:

```python

from gensim.models import Word2Vec

sentences = [["Я", "люблю", "готовить", "вкусную", "пиццу"],

["Она", "предпочитает", "читать", "книги", "вечером"]]

model = Word2Vec(sentences, size=100, window=5)

```

– Получение векторных представлений слов: Теперь мы можем получить векторное представление каждого слова из обученной модели.

Код на Python:

```python

vector_pizza = model.wv["пиццу"]

vector_books = model.wv["книги"]

print("Векторное представление слова 'пиццу':")

print(vector_pizza)

print("\nВекторное представление слова 'книги':")

print(vector_books)

```

Вывод:

```

Векторное представление слова 'пиццу':

[0.12345678, -0.23456789, …] (вектор размерностью 100)

Векторное представление слова 'книги':

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии