Графическое отображение данных существенно упрощает их просмотр и понимание. Визуализация применяется на всех этапах процесса. Работая с данными в табличной форме, легко пропустить такие вещи, как выбросы, тренды в распределениях или незначительные изменения данных во времени. Правильное графическое отображение выявляет эти и другие аспекты. Визуализация является важной и растущей областью науки о данных, и мы рекомендуем работы Эдварда Туфта{5} и Cтефана Фью{6} как отличное введение в ее принципы и методы.
В процессе обработки данных (от их первоначального сбора и исследования до сравнения результатов различных моделей и типов анализа) используются статистические и вероятностные методы. Машинное обучение применяет их для поиска закономерностей. Специалист по данным не обязан уметь писать алгоритмы машинного обучения, но должен понимать, как и для чего они используются, что означают сгенерированные ими результаты и на каком типе данных могут выполняться конкретные алгоритмы. Иначе говоря, воспринимать их как «серый ящик» — систему с частично известной внутренней структурой. Это позволит сконцентрироваться на прикладных аспектах и провести тестирование различных алгоритмов машинного обучения, чтобы понять, какие из них лучше всего подходят для конкретного сценария.
Наконец, важным аспектом успешности специалиста по данным является умение рассказать с их помощью историю. Это может быть история прозрения, которое дал анализ, или история о моделях, созданных в ходе проекта, которые идеально впишутся в процессы организации и благотворно повлияют на ее функционирование. В потрясающем проекте по обработке данных нет никакого смысла, если его результаты не будут использованы, но для этого надо сообщить о них коллегам, не имеющим технического образования, в такой форме, чтобы они смогли все понять.
Где используется наука о данных?
Наука о данных определяет принятие решений практически во всех сферах современного общества. В этом разделе мы опишем три тематических кейса, которые иллюстрируют ее влияние на потребительские компании, использующие науку о данных в продажах и маркетинге, на правительства, совершенствующие с ее помощью здравоохранение, правосудие и городское планирование, и на профессиональные спортивные клубы, проводящие на ее основе отбор игроков.
Компания Walmart (и другие розничные сети) имеет доступ к большим наборам данных о предпочтениях своих покупателей, собирая их через системы торговых точек, отслеживая поведение клиентов в интернет-магазине и анализируя комментарии о компании и ее продуктах в социальных сетях. Уже более 10 лет Walmart использует науку о данных для оптимизации уровня запасов в магазинах. Хорошо известен пример, когда Walmart пополняла ассортимент пирожных с клубникой в магазинах на пути следования урагана «Фрэнсис» в 2004 г. на основе анализа данных о продажах в период прохождения урагана «Чарли» несколькими неделями ранее. Недавно Walmart использовала науку о данных для увеличения розничных доходов, начав внедрять новые продукты на основе анализа тенденций в социальных сетях, анализировать активность по кредитным картам для составления рекомендаций клиентам, а также оптимизировать и персонализировать взаимодействие с клиентами через официальный сайт. Walmart связывает увеличение объема онлайн-продаж на 10–15 % именно с использованием науки о данных{7}.
В онлайн-мире эквивалентом апселлинга (продажи более дорогих версий товара) и перекрестных продаж являются рекомендательные системы. Если вы смотрели фильмы на Netflix или покупали что-нибудь на Amazon, то знаете, что эти сайты собирают и используют данные, а затем предлагают вам варианты следующих просмотров или покупок. Одни рекомендательные системы направляют вас к блокбастерам и бестселлерам, а другие — к нишевым продуктам, соответствующим вашим вкусам. В книге Криса Андерсона «Длинный хвост: Эффективная модель бизнеса в интернете»{8} утверждается, что по мере удешевления производства и дистрибуции рынки переходят от продажи большого количества небольшого набора хитов к продажам меньшего количества более разнообразных нишевых продуктов. Этот компромисс между стимулированием продаж популярных и нишевых продуктов лежит в основе разработки рекомендательных систем и влияет на алгоритмы обработки данных, используемые в этих системах.