Все сказанное — не шутка. Именно так устроен квантовый мир. Одновременно «живомертвые» квантовые частицы — реальность нашего мира. Более того, среди них есть и такие, для которых такая смесь гораздо естественнее, чем «чистые» состояния. Таковы, например, К°-мезоны[52].
Существует несколько интерпретаций (т. е. попыток «разумного» объяснения) этих квантовых странностей, примиряющих нас с тем, что мы видим наш мир совсем не таким. Коты и кошки у нас живомертвыми не бывают. Эти интерпретации очень разные, и какая из них верна, мы не знаем. Для нас интересна интерпретация Эверетта. Согласно ей, смешанное состояние предусматривает наличие двух параллельных вселенных, в которых одновременно существует наш кот: в одной из них он жив, во второй — мертв. Что касается наблюдателя эксперимента (т. е. нас с вами), то, согласно интерпретации Эверетта[53], он также оказывается вместе с котом сразу в двух вселенных, т. е., выражаясь «квантовым языком», «запутывается» в смешанном квантовом состоянии.
Повторим: в квантовом мире есть смешанные состояния. Скажем, наполовину (т. е. ½) кот жив и наполовину мертв. Когда мы смотрим на кота (это «смотрение» в квантовой механике называется «наблюдением»), кот либо жив, либо мертв — как повезет (вероятности мы определили). Но до того, как мы посмотрели, мы имеем дело со смешанным состоянием. Оно реально! Более того, реальны любые суперпозиции (суммы) состояний кота. Например, такие[54]:
|1 > = ½ (|кот живой> + |кот мертвый>) и
|2> = ½ (|кот живой> — |кот мертвый>)
Из этих состояний можно получить как живого, так и мертвого кота, складывая (вычитая) их друг с другом; проверьте:
|кот живой> = |1> + |2>
|кот мертвый> = |1 > — |2>
Тот, кто знаком хоть немного с линейной алгеброй, легко узнает здесь знакомые векторы.
Так вот, квантовый компьютер — это операции с именно такими векторами — смешанными состояниями, а они возможны только в квантовом мире.
Введем, например, в квантовый компьютер телефонный справочник. Чтобы записать имя и телефон одного абонента, предположим, нужно 80 знаков или байт. Каждый байт состоит из 8 бит. Бит — это состояние: 0 или 1. Если в городе 10 миллионов абонентов, потребуются 80×8×10 000 000 бит.
Но если мы будем записывать смешанные состояния — каждый бит будет смесью битов всех 10 миллионов абонентов, нам потребуется их в 10 миллионов раз меньше. И места надо меньше, и «обработать» можно одним действием — для этого квантовый компьютер и придумали.
Вот только биты должны быть связаны, «спутаны» друг с другом. Мы должны знать, что вот это — от этого абонента, вот то — от другого, хоть и в разных битах. Повторим, такое возможно именно в квантовой механике.
Но вот мы полезли в справочник, чтобы посмотреть телефон нашего знакомого. Читаем: Иванов Иван Иванович, телефон номер такой-то.
А теперь давайте вспомним интерпретацию Эверетта и нашу «впутанность» в состояния. Глянули — а кошка мертва. Глянули — а знакомого нашего зовут Иван Иванович. А ведь могло быть и иначе: кошка жива, а товарищ — Любовь Петровна. Не повезло просто.
Состояния спутанные, и мы запутались в них, но никакого противоречия. Все взаимосогласовано как в звенящем бокале, как в «машине времени Болотовского», но много сложнее. Структура «спутанных» состояний сложна, и по каждому возможному пути «волна должна прибежать в фазе» и «бокал звенеть».
Однако, когда мы смотрим на звенящий бокал, ни в нас, ни в бокале ничего не меняется. Бокал — сам по себе, мы — сами по себе. В квантовом мире все принципиально иначе. «Эксперимент» и «наблюдатель» неразрывно связаны.
Так, если вы следите, через какое из двух отверстий пролетит фотон, вы увидите, что он пролетает только через одно — ведет себя, как маленький летящий шарик. Но стоит вам отвернуться, окажется, что фотон пролетает одновременно через оба. Об этом свидетельствует так называемая интерференционная картина. Не верите — посмотрите учебник (лучше всего уже упомянутые лекции Феймана). Что же это — мир, разный лишь от того, смотрим мы или нет? Не вдаваясь в детали — да!
А теперь давайте подумаем. Конечно, квантовый компьютер может работать сам по себе и давать ответы, которые никто и смотреть не будет. Но зачем мы его построили — разве не ради ответов? Значит, обязательно посмотрим! А это существенным образом изменит не только устройство квантового компьютера, но и нас — мы, согласно квантовой физике, его неотъемлемая часть. Увы, привнесение в наш мир квантовых законов меняет его причинность: расчет на компьютере — теперь, не прогноз, а
В мире нет места парадоксу, а вавилонские башни рушатся — как ни старайся. Вот только что будет на этот раз в роли