Физика, удовлетворяющая этому постулату, удовлетворит и общему постулату относительности, потому что в совокупности всех подстановок найдутся такие, которые соответствуют всем относительным движениям (трехмерных) координатных систем. Тот факт, что это требование общей ковариантности, отнимающее у пространства и времени последний остаток физической предметности, является естественным, видно из следующего соображения. Все наши пространственно-временные констатации всегда сводятся к установлению пространственно-временных совпадений. Так, если события состояли только в движении материальных точек, то в конце концов наблюдались бы только встречи двух или нескольких таких точек. Результаты наших измерений также являются не чем иным, как констатацией подобных встреч между материальными точками наших масштабов с другими материальными точками и соответственно совпадений между часовыми стрелками, точками циферблата и рассматриваемыми точечными событиями, происходящими в том же месте и в то же время.
Кротовые норы соединяют разные области пространства и времени. Теоретически они опасны тем, что открываются совсем ненадолго, а затем закрываются, отрезав путь назад.
Координатная система вводится только для более простого описания совокупности совпадений. Четыре пространственно-временные переменные
Парадокс кротовых нор наталкивает на мысль, что если мы вернемся в прошлое, то сумеем изменить его, а следовательно, изменится и будущее. Что будет, если вернуться в прошлое и убить собственного деда до того, как он успеет зачать твоего отца или мать?
Вопросы космологии и общая теория относительности
Дифференциальное уравнение Пуассона имеет вид
(1)
В совокупности с уравнением движения материальной точки это уравнение не может полностью заменить теорию дальнодействия Ньютона. К ним необходимо добавить условие того, что потенциал φ в пространственной бесконечности стремится к определенному пределу. Схожим образом обстоит дело и в теории тяготения, которая следует из общего принципа относительности. Здесь также к дифференциальным уравнениям должны быть добавлены граничные условия на пространственной бесконечности, если мы на самом деле рассматриваем мир бесконечно протяженным в пространстве.
В задачах, связанных с планетной системой, выбираются эти граничные условия при допущении, что можно выбрать такую координатную систему, в которой все потенциалы тяготения