Классической механике и в неменьшей степени специальной теории относительности свойственен некоторый теоретико-познавательный недостаток, который, пожалуй, впервые был ясно отмечен Эрнстом Махом. Мы поясним его суть на следующем примере. Пусть два жидких тела одинаковой величины и состава свободно парят в пространстве на таком большом расстоянии друг от друга (и от всех прочих масс), что должны приниматься во внимание только те гравитационные силы, с которыми действуют друг на друга части одного и того же тела. Пусть расстояние между этими телами остается постоянным. Кроме того, будем считать, что не происходит перемещения друг относительно друга частей одного и того же тела. При этом пусть каждая масса, рассматриваемая наблюдателем, покоящимся относительно другой массы, вращается вокруг линии, соединяющей массы с постоянной угловой скоростью (это относительное движение обеих масс всегда возможно установить). Наконец, представим себе, что поверхности обоих тел (S1 и S2) измерены с помощью масштабов (покоящихся относительно этих тел). Будем считать, что согласно результатам измерений поверхность S1 представляет собой сферу, а поверхность S2 – эллипсоид вращения. Далее возникает вопрос: по какой причине тела S1 и S2 ведут себя по-разному? Ответ на этот вопрос может быть признан удовлетворительным с теоретико-познавательной точки зрения только тогда, когда обстоятельство, указанное в качестве причины, является наблюдаемым опытным фактом[15]. Дело в том, что принцип причинности только тогда имеет смысл суждения о явлениях в мире опыта, когда в качестве причин и следствий в конечном итоге оказываются лишь собственно наблюдаемые факты.
Механика Ньютона не дает удовлетворительного ответа на поставленный выше вопрос, а говорит следующее. Законы механики справедливы для пространства R1, относительно которого тело S1 находится в покое, но несправедливы для пространства R2, относительно которого находится в покое тело S2. Однако вводимое при этом галилеево пространство R1 (и движение по отношению к этому пространству), по сути, является фиктивной причиной, а вовсе не наблюдаемым фактом. Другими словами, очевидно, что механика Ньютона в рассматриваемом случае удовлетворяет требованию причинности не по существу, но лишь кажущимся образом, возлагая ответственность за наблюдаемое различное поведение тел S1 и S2 на фиктивную причину – пространство R1.
Удовлетворительным ответом на рассматриваемый вопрос может быть только такой: физическая система, состоящая из тел S1 и S2, сама по себе не дает возможности указать причину, с помощью которой можно было бы объяснить различное поведение тел S1 и S2. Следовательно, причина должна лежать вне этой системы. Из последнего утверждения, в свою очередь, следует вывод, что общие законы движения, которые, в частности, определяют форму тел S1 и S2, должны быть таковы, чтобы механические свойства тел S1 и S2 в значительной степени обусловливались отдаленными массами, которые мы не включили в рассматриваемую систему. Эти отдаленные массы (и их относительные движения по отношению к рассматриваемым телам) должны тогда рассматриваться как носители принципиально наблюдаемых причин различного поведения рассматриваемых тел S1 и S2, и они становятся на место фиктивной причины R1. Из всех возможных пространств R1, R2 и т. д., движущихся любым образом относительно друг друга, ни одному из них не должно изначально отдаваться предпочтение, если только мы хотим устранить указанный теоретико-познавательный недостаток. Законы физики должны быть составлены так, чтобы они были справедливы для произвольно движущихся координатных систем. Таким образом мы приходим к расширению постулата относительности.
Помимо рассмотренного важнейшего теоретико-познавательного аргумента, в пользу расширения теории относительности свидетельствует и еще один хорошо известный физический факт. Пусть К – галилеева координатная система, т. е. такая, относительно которой (по крайней мере, в рассматриваемой четырехмерной области) некоторая масса, достаточно удаленная от других, движется прямолинейно и равномерно. Пусть К’ – вторая координатная система, которая относительно К движется равномерно ускоренно. Тогда достаточно изолированная от других масса совершает относительно К’ ускоренное движение, причем ни ускорение, ни направление этого ускорения не зависят от химического состава и физического состояния этой массы.