Читаем Монизм как принцип диалектической логики полностью

Элемент свойства в ряде случаев легче определить, чем само это свойство. Так, например, легче измерить с помощью эталона сторону квадрата, чем непосредственно его площадь. Такой подход к задаче требует применения уже специфически логических методов познания: анализа данного целостного свойства и его одновременного синтеза, т.е. такого разложения данного свойства на элементы, при котором его определенность не утрачивается, остается тождественной себе в ее элементарном выражении. Так, например, любое выражение площади геометрической фигуры представляет собой результат разложения данной определенности на элементы: треугольника – на основание и высоту, круга – на окружность и радиус. Одновременно этот анализ оказывается также и синтезом – отождествлением количественной определенности площади с определенностью ее радиуса, взятого с известным преобразованием.

Здесь перед нами трудность, которую не разрешить с помощью традиционного метода абстракции.

Дело заключается даже не в том, что продуктами математического анализа, геометрическими элементами пространственной определенности вещи оказываются «идеальные вещи» (точки, прямые, плоскости), но и в том, что продуктом построенного на этих элементах синтеза оказываются площади и объемы. Сколь ни трансформировали бы мы образы нашего созерцания абстракциями, сколь ни корректировали бы нашу интуицию соображениями, связанными со своеобразной «математической методологией» или «гносеологией», этот результат нам получить не удастся. В самом деле, в формуле площади круга мы отождествляем радиус – одномерный элемент, отрезок прямой – с двумерным объектом – площадью.

Наша интуиция и «здравый смысл» простого эмпирического созерцания протестуют против такого отождествления: «кусок» плоскости, как бы он ни был мал, несводим к прямой, которая имеет только одно измерение, в отличие от плоскости, имеющей два измерения. (Правда, существует теорема о том, что часть плоскости можно заполнить непрерывной ломаной линией, но она имеет совершенно специфический смысл.) Тем не менее для математического мышления нет ничего проще такого отождествления.

Различия между математическим и эмпирическим анализом настолько глубоки, что они определяют своеобразие не только метода, но и предмета теоретического познания. Элементы вещи, даже рассматриваемой в аспекте ее пространственной определенности, и элементы самой пространственной определенности не совпадают. Они как бы лежат в различных измерениях, и сколько бы мы ни разлагали вещь на ее элементарные составные части, никогда не получим такого простейшего элемента геометрии, как точка.

Рассмотрим, например, такую пространственную определенность вещи, как объем. Поскольку мы рассматриваем объем как количественную определенность вещи, постольку и в качестве элементов этой определенности мы будем рассматривать элементы самой вещи. Так, мы говорим, что объем данной смеси жидкости состоит из одного объема воды и двух объемов кислоты. Разлагая вещь на составные элементы, мы в качестве элементов имеем объем, т.е. ту же самую определенность, анализом которой мы задались первоначально. Обращаясь к самой вещи, нам удается анализировать, разложить на составные элементы именно вещь, но не определенность объема, как таковую. Объем, как таковой, как определенность, остается неразложимым, целостным.

Это и понятно. Ведь пространство, как и время, представляет собой объективную форму существования материальных вещей, поэтому сколько бы мы ни разлагали вещи на составные компоненты, мы никогда не дойдем до такого элемента, в котором пространственные свойства действительности были бы представлены не сполна. В результате эмпирического анализа вещей мы всегда будем иметь некоторую материальную вещь, обладающую теми же пространственными свойствами, что и целое, только, возможно, в другой конфигурации. Поэтому в качестве элемента вещи мы никогда не получим плоскость, линию, тем более точку – объект, не имеющий измерений.

Разложение пространственной определенности вещи, такой, как объем, на такие элементы, как прямая, точка, эмпирически лишено смысла как со стороны анализа, так и со стороны синтеза. Формула площади круга (πr2) содержательно совершенно бессмысленна, ибо такая эмпирическая определенность, как поверхность, количественным выражением которой является площадь, никак не может быть получена путем какой-либо комбинации отрезков.

Становится совершенно очевидным, что математическое количественное значение площади и самая эта площадь как определенность вещи представляют собой явления различного порядка. Но в математике рассматриваются не пространственные определенности, как таковые, а их количественные значения. А эти последние представляют собой какую-то особую реальность, отличную от той, которая раскрывается в созерцании природы. И эту реальность мы не получим с помощью одной лишь абстракции, примененной к объектам созерцания.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия