Арош работал научным сотрудником Национального центра научных исследований (CNRS, 1967–1975), затем на протяжении года стажировался в Стэнфордском университете в группе Артура Шавлова . В 1975 году он был назначен профессором Университета Пьера и Марии Кюри . В 1974–1984 годах преподавал также в парижской Политехнической школе . В 1994–2000 годах возглавлял отделение физики Высшей нормальной школы . С 2001 года – профессор Коллеж де Франс , где он заведует кафедрой квантовой механики (с сентября 2012 года также администратор колледжа). Серж Арош является членом Французского, Европейского и Американского физических обществ.
Разобраться с сутью открытий Уайнленда и Ароша нам поможет д.ф.-м.н., профессор, заведующий лабораторией квантовой информации и квантовой оптики кафедры квантовой электроники физического факультета МГУ Сергей Кулик.(http://postnauka.ru/faq/5510 )
Начиная с 20-х годов предыдущего столетия физики стали понимать, что микромир описывается законами квантовой механики. Однако выделить изолированную квантовую систему оказывается чрезвычайно сложно – она всегда стремится взаимодействовать с окружением. Поэтому исследования, проводимые в XX веке, в основном ограничивались ансамблями, содержащими большое число квантовых частиц.
Начиная с 70–80-х годов XX столетия в распоряжении экспериментаторов оказались технологии, позволяющие чрезвычайно хорошо изолировать квантовые системы от внешнего мира и контролировать их эволюцию.
Развитые лауреатами экспериментальные методы позволяют управлять состоянием отдельных изолированных атомов с помощью одиночных фотонов и наоборот. Отметим, что изоляцию квантовой системы от остального мира характеризует величина, называемая в физике добротностью (чем больше добротность, тем лучше изолирована система), а качество приготовления заданного состояния – температурой системы (идеально приготовленная система должна иметь нулевую, т. е. минимально возможную температуру). Несколько впечатляющих цифр, характеризующих уровень достижений лауреатов: в экспериментах С. Ароша добротность резонаторов составляла 4х1010, а разработанная Д. Уайлендем техника сателлитного охлаждения позволяет охлаждать ионы до температур порядка нанокельвинов. Для сравнения, добротность маятника механических часов в десятки миллионов раз меньше, а температура в межзвездном космическом пространстве в миллиарды раз больше.
А научный обозреватель одного из ведущих российских новостных интернет-изданий «Lenta.ru» Андрей Коняев (http://lenta.ru/articles/2012/10/09/phnobel/) обращает внимание на то, что результаты работ нобелевских лауреатов укрепляют позиции эвереттовской интерпретации квантовой механики: «Чаще всего, говоря о квантовой механике, придерживаются так называемой копенгагенской интерпретации, которую сформулировали Нильс Бор и Вернер Гейзенберг в 20-х годах прошлого века. До недавнего времени это была самая популярная интерпретация после сугубо инструментального подхода, сформулированного Дэвидом Мермином в словах «заткнись и считай» (часто эту фразу приписывают Ричарду Фейнману), однако в последние годы она стала терять свои позиции. Сейчас копенгагенская уступает так называемой многомировой интерпретации». То есть жизнь показывает, что физическая сторона эвереттики уже перестала быть «гадательной» и перешла в область лабораторной практики.
Вот что говорит об этом А. Коняев.
Эксперимент Ароша выглядел следующим образом. Он брал резонатор, состоящий из двух зеркал, охлажденных почти до абсолютного нуля и расположенных на расстоянии около трех сантиметров друг от друга. Внутри резонатора создавалось электромагнитное поле, то есть, по сути, от стенки к стенке летали фотоны.