Читаем Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии полностью

Разве ученые абсолютно точно знают, что такое на самом деле точка в пространстве или прямая линия, проходящая через нее? Может ли круг иметь форму прямоугольника? Знаем ли мы, что означает «параллельность»?

Ответы на эти вопросы не являются вечными истинами, а меняются на протяжении времени. Евклид с полной убежденностью утверждал, что «через точку вне прямой можно провести только одну прямую, параллельную данной», но Лобачевский показал, что можно провести много параллельных прямых, практически бесконечное число. Риман был не согласен с обоими и считал, что параллельные прямые не существуют. Кто же из этих великих математиков прав? Может, все они правы?

Или они все ошибаются?

В данной главе мы как раз и разрешим все эти неопределенности, но, пожалуй, нам лучше начать с простого примера, который наглядно демонстрирует, почему возникает путаница относительно самой природы физической реальности.

Отправляясь из дома на работу или в другое место, мы вычисляем время, которое потребуется на дорогу, исходя из расстояния. Но часто оказывается, что расчеты не соответствуют реальному времени. Пробки, светофоры, дорожные работы — список таких задержек можно продолжать бесконечно. Все это, казалось бы, идет наперекор нашим тщательным планам.

Проблема заключается в том, что мысленно мы моделируем наше путешествие геометрически идеальным образом, представляя наш путь в виде почти прямой линии. Однако реальность вовсе не является геометрически идеальной. Наши расчеты нарушают не только неисправные светофоры или разгружающие товары грузовики. Дело еще и в том, что блоки городских зданий не образуют идеальных квадратов, а улицы не пересекаются под идеально прямыми углами… Означает ли это, что невозможно найти оптимальную дорогу, чтобы утром добраться до работы?

* * *

ИЛЬДЕФОНСО СЕРДА (1815–1876)

Известный главным образом как инженер и архитектор, Ильдефонсо Серда обладал многими талантами, занимаясь также экономикой, правом и политикой. Его реформа городского планирования в Барселоне в XIX в., получившая название «План Серда», изменила лицо города, в результате чего появился один из самых впечатляющих районов — Эшампле. По-каталонски (I’Eixample) или по-испански (el Ensanche) это означает «расширение». Улицы Эшампле образуют прямоугольные кварталы, пересекаясь на равных расстояниях друг от друга.

Вид с воздуха на район Эшампле в Барселоне.

* * *

Заколдованные улицы

Как и следовало ожидать, реальность никогда не бывает геометрически идеальной, иначе бы мир был очень скучным, представляя из себя утомительные повторения упорядоченных форм. Однако рациональность и упорядоченность являются важными критериями, которые необходимо учитывать на практике, например, в городском планировании. По вполне разумным причинам улицы многих современных городов образуют квадратные блоки. Одним из первых примеров такого городского планирования был район Эшампле в испанском городе Барселоне, детище архитектора Ильдефонсо Серда. Этот район послужит идеальным вводным примером к нашей теме.

Представьте, что вы находитесь в районе Эшампле и хотите попасть из точки А в точку В. Если каждый городской квартал считать за единицу пути, то каким будет в этих единицах расстояние между точками А и В?

Глядя на этот рисунок, можно представить треугольник с гипотенузой (прямая линия между точками А и В) и двумя другими сторонами (вдоль улиц от одной точки к другой). Тогда длина одной стороны составит 4 единицы, а другой — 2.

Применяя теорему Пифагора (а = Ь2 + с2), мы можем найти длину гипотенузы: (42 + 22) = 20 = 4,47 единиц. Если нам нужно рассчитать время в пути, то очевидно, что это расстояние обманчиво, потому что мы не можем передвигаться из одной точки в другую по прямой линии. Реальное расстояние будет суммой двух других сторон треугольника, то есть 6 единиц.

Мы могли бы попробовать различные другие маршруты, чтобы найти наименьшее расстояние. Вариантов множество. Мы можем двигаться по вертикали и по горизонтали, поворачивая на первую улицу, а затем на вторую, или сделать поворот через две улицы и так далее. Однако общее расстояние всегда будет 6 единиц.

На следующем рисунке изображены различные маршруты между точками А и В. Всего имеется 15 возможностей.

Выходит, что фактический маршрут вовсе не является прямой линией. Здесь появляется другое понятие расстояния, которое называется расстоянием такси. Это понятие нелинейного расстояния лежит в основе геометрии такси.

* * *

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное