Например, сложите
1/3 + 2/15
Заметим, что
1/3 = 5/15
Поэтому
1/3 + 2/15 = 5/15 + 2/15 = 7/15
При сложении
1/2 + 7/8
Замечаем, что
1/2 = 4/8
Тогда
1/2 + 7/8 = 4/8 + 7/8 =11/8
При сложении
1/3 + 2/5
Видим, что
1/3 = 5/15 и 2/5 = 6/15
В итоге
1/3 + 2/5 = 5/15 + 6/15 = 11/15
УПРАЖНЕНИЕ: СЛОЖЕНИЕ ДРОБЕЙ (С НЕРАВНЫМИ ЗНАМЕНАТЕЛЯМИ)
1. 1/5 + 1/10 2. 1/6 + 5/18 3. 1/3 + 1/5
4. 2/7 + 5/21 5. 2/3 + 3/4 6. 3/7 + 3/5 7. 2/11 + 5/9
Вычитание дробей
Вычитание дробей похоже на их сложение. Мы покажем это действие на примерах и обеспечим вас тренировочными упражнениями.
2/5 — 2/5 = 1/5; 4/7 — 2/7 = 2/7; 5/8 — 1/8 = 4/8 = 1/2
1/3 /2/15 = 5/15 — 2/15 = 3/15 = 1/5
7/8 — 1/2 = 7/8 — 4/8 = 3/8
1/2 — 7/8 = 4/8 — 7/8 = -3/8; 2/7 — 1/4 = 8/28 — 7/28 = 1/28
2/3 — 5/8 = 16/24 — 15/24 = 1/24
УПРАЖНЕНИЕ: ВЫЧИТАНИЕ ДРОБЕЙ
1. 8/11 — 3/11 2. 12/7 — 8/7 3. 13/18 — 5/18
4. 4/5 — 1/15 5. 9/10 — 3/5 6. 3/4 — 2/3
7. 7/8 — 1/16 8. 4/7 — 2/5 9. 8/9 — 1/2
Глава 5
Искусство приближенной оценки
До сих пор вы совершенствовали ментальные техники, необходимые для получения точных ответов в математических задачах. Однако часто бывает достаточно приблизительной оценки решения. Скажем, вы получаете расценки различных кредиторов рефинансирования кредита за ваш дом. Все, что вам действительно понадобится на данном этапе сбора информации, — это приблизительно оценить размер ежемесячного платежа. Или, скажем, вы оплачиваете счет в ресторане вместе с компанией друзей и не хотите вычислять в нем долю каждого до последней копейки. Методы приближенной оценки, описанные в данной главе, сделают обе эти задачи (и многие другие аналогичные) вполне решаемыми. Сложение, вычитание, деление и умножение — все поддается приближенной оценке. Как обычно, мы будем выполнять расчеты слева направо.
Приближенная оценка — хороший способ облегчить себе жизнь, когда при решении задачи список чисел для запоминания становится слишком длинным. Трюк сводится к округлению исходных чисел в бóльшую или меньшую сторону.
* * *